Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T17:35:39.539Z Has data issue: false hasContentIssue false

Magnetic Properties of Thin Eu Films on Gd(0001) Studied by Magnetic Circular Dichroism in Photoemission

Published online by Cambridge University Press:  15 February 2011

E. Arenholz
Affiliation:
Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany, [email protected]
K. Starke
Affiliation:
Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany, [email protected]
G. Kaindl
Affiliation:
Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany, [email protected]
Get access

Abstract

The magnetic order of ultra-thin Eu films on Gd(0001) was studied in an element-specific and layer-resolved way using magnetic circular dichroism (MCD) in 4ƒphotoemission (PE). It was found that Eu films up to 2 monolayers (ML) exhibit a high net magnetization parallel to that of the Gd substrate. For Eu coverages exceeding 2 ML, the ferromagnetic alignment of the Eu moments breaks down, except for the Eu interface layer. A comparison of the temperature dependences of the Eu-4/ and Gd-4/ MCD-PE signals for 1-ML-Eu/Gd(0001) with the results of a layer-resolved mean-field calculation results in values for the exchange-coupling constants within the Eu monolayer as well as between Eu and the Gd substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schütz, G., Wagner, W., Wilhelm, W., Kienle, P., Zeller, R., Frahm, R., and Materlik, G., Phys. Rev. Lett. 58, pp. 737740 (1987).Google Scholar
2. Baumgarten, L., Schneider, C.M., Petersen, H., Schäfers, F., and Kirschner, J., Phys. Rev. Lett. 65, pp. 492495 (1990).Google Scholar
3. Starke, K., Navas, E., Baumgarten, L., and Kaindl, G., Phys. Rev. B 48, pp. 13291332 (1993).Google Scholar
4. Arenholz, E., Navas, E., Starke, G., Baumgarten, L., and Kaindl, G., Phys. Rev. B 51, pp. 82118220 (1995).Google Scholar
5. Thole, B.T. and van der Laan, G., Phys. Rev. B 44, pp. 1242412439 (1991).Google Scholar
6. Bahrdt, J., Gaupp, A., Gudat, W., Mast, M., Molter, K., Peatman, W.B., Scheer, M., Schroeter, Th., and Wang, Ch., Rev. Sei. Instrum. 63, pp. 339342 (1992).Google Scholar
7. Stenborg, A., Björneholm, O., Nilsson, A., Mårtensson, N., Andersen, J.N., and Wigren, C., Surf. Sci. 211/212, pp. 470480 (1989).Google Scholar
8. Fedorov, A.V., Arenholz, E., Starke, K., Navas, E., Baumgarten, L., Laubschat, C., and Kaindl, G., Phys. Rev. Lett. 73, pp. 601604 (1994).Google Scholar
9. Doniach, S. and Šunjic, M., J. Phys. C 3, pp. 285291 (1970).Google Scholar
10. Martin, W.C., Zalubas, R., and Hagan, L., Atomic Energy Levels - The Rare Earth Elements (U.S. Government Printing Office, Washington, 1978), p. 208.Google Scholar
11. Stenborg, H.A., Andersen, J.N., Björneholm, O., Nilsson, A., and Mårtensson, N., Phys. Rev. Lett. 63, pp. 187190 (1989).Google Scholar
12. Aguilera-Granja, F. and Morán-Lopez, J.L., Phys. Rev. B 31, pp. 71467150 (1985);Google Scholar
13. Jensen, P.J., to be published.Google Scholar