Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T18:55:30.685Z Has data issue: false hasContentIssue false

Magnetic Properties and Fabrication of Monodisperse FePd Nanoparticles

Published online by Cambridge University Press:  21 March 2011

Yanglong Hou
Affiliation:
Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
Hiroshi Kondoh
Affiliation:
Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
Toshiaki Ohta
Affiliation:
Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan, Fax: 81-3-38121896; Tel:81-3-58414333; E-mail: [email protected]
Get access

Abstract

The combination of 1-adamantanecarboxylic acid and tri-alkylphosphine was applied to produce monodisperse FePd nanoparticles by the polyol reduction of palladium acetylacetonate and thermally decomposition of iron pentacarbonyl. Images of high resolution transmission electron microscopy (TEM) and X-ray diffraction (XRD) data indicate a highly monodisperse and crystalline nature of the FePd nanoparticles. Magnetic studies performed by Quantum Design SQUID magnetometer show that FePd (16nm) nanoparticles are superparamagnetic at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Murray, C. B., Sun, S., Doyle, H. and Betley, T., Mater. Res. Soc. Bull. 985 (2001); C. B. Murray; C. R. Kagan and M. G. Bawendi, Ann. Rev. Mater. Sci. 545, 30 (2000).Google Scholar
2. Feldheim, D. L. and Foss, C. A. Jr., (Eds.), Metal nanoparticles: synthesis, characterization and applications. Dekker, New York, 2002.Google Scholar
3. Manna, L., Milliron, D. J., Meisel, A., Scher, E. C. and Alivisatos, A. P., Nat. Mater. 2, 382 (2003).Google Scholar
4. Dumestre, F., Chaudret, B., Amiens, C., Renaud, P. and Fejes, P., Science 303, 821 (2004).Google Scholar
5. Cheon, J., Kang, N. J., Lee, S. M., Leen, J. H., Yoon, J. H. and Oh, S. J., J. Am. Chem. Soc. 126, 1950 (2004).Google Scholar
6. Hou, Y. L. and Gao, S., J. Mater. Chem. 13, 1510 (2003); Y. L. Hou, J. F. Yu and S. Gao, J. Mater. Chem. 13, 1983 (2003); Y. L. Hou, S. Gao, T. Ohta and H. Kondoh. Eur. J. Inorg. Chem, 1169 (2004).Google Scholar
7. Puntes, V. F., Krishnan, K. M. and Alivisatos, A. P., Science 291, 2115 (2001).Google Scholar
8. Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X. and Li, G., J. Am. Chem. Soc. 126, 273 (2004); M. Chen and D.E. Nikels, Nano. Lett. 2, 211 (2002); S. Sun and H. Zeng, J. Am.Chem. Soc. 124, 8204 (2002); S. Sun, C. B. Murray, D. Weller, L. Folksv and A. Moser, Science 287, 1989 (2000); S. Sun and C. B. Murray, J. Appl. Phys. 85, 4325 (1999).Google Scholar
9. Hyeon, T., Chem. Commun. 927(2003), and see the references therein.Google Scholar
10. Green, M. and O'Brien, P., Chem. Commun. 1912 (2001).Google Scholar
11. Shevchenko, E. V., Talapin, D. V., Schnablegger, H., Kornowski, A., Festin, Ö., Svedlindh, P., Haase, M. and Weller, H., J. Am. Chem. Soc. 125, 9090 (2003); E. V. Shevchenko, D. V. Talapin, A. L. Rogach, E. V. Shevchenko, D. V. Talapin, M. Haase and H. Weller, J. Am. Chem. Soc. 124, 11480 (2001); F. Wiekhorst, E. Shevchenko, H. Weller and J. Kötzler, Phys. Rev. B 67, 22416 (2003). 12. M. Chen and D.E. Nikels, J. Appl. Phys. 91, 8477 (2002).Google Scholar
13. Weller, D. and Doerner, M. F., Ann. Rev. Mater. Sci. 30, 611 (2000); G. Armelles, D. Weller, B. Rellinghaus, R. F. C. Farrow, and M. F. Toney, IEEE. Trans. Mag. 33, 3220 (1997).Google Scholar
14. Hou, Y., Kondoh, H., Kogure, T and Ohta, T., submitted.Google Scholar
15. Wunder, R. and Philips, J., J. Phy. Chem. 100, 14430 (1996); R. Wunder and J. Philips, J. Phy. Chem. 98, 12329 (1994); J. I. Pérez-Landazábal, C. Gómez-Polo, V. Recart, J. Vergara, and R. J. Ortega, J. Magn. Magn. Mater. 196-197, 179 (1999); T. Teranishi and M. Miyaki, Chem. Mater. 11. 3414 (1999).Google Scholar
16. Peng, X., Wickham, J. and Alivisatos, A. P., J. Am. Chem. Soc. 120, 5343 (1998).Google Scholar
17. Sato, K. and Hirotsu, Y., J. Appl. Phys. 93, 6291 (2003); M. Matsui and K. Adachi, Phys. B 161, 53 (1989); K. Sato, B. Bian and Y. Hirotsu, J. Appl. Phys. 91, 8516 (2002).Google Scholar