Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:00:15.220Z Has data issue: false hasContentIssue false

Magnetic Nanostructures by Molecular Design: Synthetic Chemistry in Materials Research

Published online by Cambridge University Press:  15 March 2011

Jenn L. H. Sandifer
Affiliation:
Department of Chemistry, University of Florida, Gainesville, FL 32611, U.S.A.
George Christou
Affiliation:
Department of Chemistry, University of Florida, Gainesville, FL 32611, U.S.A.
Get access

Abstract

In the field of nanostructured magnetic materials, the top-down approach of making ever-smaller magnetic particles has been successful in decreasing the minimum size of magnetic nanoparticles made in this way. Simultaneously, synthetic chemists have employed a “bottom-up” approach to the same problem through discovery of increasingly large molecular magnetic clusters that behave as individual magnets at low temperature. These molecules are called single-molecule magnets, and they have been discovered in a variety of sizes, up to 4 nanometers in diameter. Some display interesting solid-state properties in the crystalline state: bistability through hydrogen bonding or crystallization in potentially useful patterns, such as tubes. The advantage of discrete molecules as nanoscale magnets is the monodispersity of particle size. As the molecular approach and the materials approach to nanoscale magnets brings the possible sizes of particles by each method within range of the other, interdisciplinary research into the complementarity of the two approaches becomes necessary. The magnetism displayed by nanoparticles and molecules alike at this size shows both classical and quantum properties, uniting the two types of production as a window into this area bridging the two major ways of describing the physical world. A discussion of the progress of the synthetic chemistry approach and physics in this area will be made, as well as a discussion of how molecular chemistry may fit in to the field of magnetic nanostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sessoli, R., Tsai, H. L., Schake, A. R., Wang, S. Y., Vincent, J. B., Folting, K., Gatteschi, D., Christou, G., and Hendrickson, D. N., J. Am. Chem. Soc. 115, 18041816 (1993).Google Scholar
2. Aromi, G., Aubin, S. M. J., Bolcar, M.A., Christou, G., Eppley, H. J., Folting, K., Hendrickson, D. N., Huffman, J. C., Squire, R. C., Tsai, H. L., Wang, S., and Wemple, M. W., Polyhedron 17, 30053020 (1998).Google Scholar
3. Bagai, R., Abboud, K. A., and Christou, G., Inorg. Chem. 47, 621631 (2008).Google Scholar
4. Christou, G., Acc. Chem Res. 22, 328335 (1989).Google Scholar
5. Stamatatos, T. C., Christou, A. G., Mukherjee, S., Poole, K. M., Lampropoulos, C., Abboud, K. A., and Christou, G., Inorg. Chem. 47, 90219034 (2008).Google Scholar
6. Milios, C. J., Vinslava, A., Wood, P. A., Parsons, S., Wernsdorfer, W., Christou, G., Perlepes, S. P., and Brechin, E. K., J. Am. Chem. Soc. 129, 89 (2007).Google Scholar
7. Stamatatos, T. C., Foguet-Albiol, D., Stoumpos, C. C., Raptopoulou, C. P., Terzis, A., Wernsdorfer, W., Perlepes, S. P., and Christou, G., J. Am. Chem. Soc. 127, 1538015381 (2005).Google Scholar
8. Stamatatos, T. C., Poole, K. M., Abboud, K. A., Wernsdorfer, W., O'Brien, T. A., and Christou, G., Inorg. Chem. 47, 50065021 (2008).Google Scholar
9. Aromi, G., Knapp, M. J., Claude, J. P., Huffman, J. C., Hendrickson, D. N., and Christou, G., J. Am. Chem. Soc. 121, 54895499 (1999).Google Scholar
10. Christou, G., Polyhedron 24, 20652075 (2005).Google Scholar
11. Milios, C. J., Vinslava, A., Wernsdorfer, W., Moggach, S., Parsons, S., Perlepes, S. P., Christou, G., and Brechin, E. K., J. Am. Chem. Soc. 129, 27542755 (2007).Google Scholar
12. Christou, G., Gatteschi, D., Hendrickson, D. N., and Sessoli, R., MRS Bull. 25, 6671 (2000).Google Scholar
13. Tasiopoulos, A. J., Vinslava, A., Wernsdorfer, W., Abboud, K. A., and Christou, G., Angew. Chem. Int. Ed. 116, 21692173 (2004).Google Scholar
14. Wernsdorfer, W., Aliaga-Alcalde, N., Hendrickson, D. N., and Christou, G., Nature 416, 406409 (2002).Google Scholar
15. Bagai, R., Wernsdorfer, W., Abboud, K. A., and Christou, G., J. Am. Chem. Soc. 129, 1291812919 (2007).Google Scholar
16. Lis, T., Acta Cryst. B 36, 20422046 (1980).Google Scholar
17. Eppley, H. J., Tsai, H. L., Devries, N., Folting, K., Christou, G., and Hendrickson, D. N., J. Am. Chem. Soc. 117, 301317 (1995).Google Scholar
18. Chakov, N. E., Soler, M., Wernsdorfer, W., Abboud, K. A., and Christou, G., Inorg. Chem. 44, 53045321 (2005).Google Scholar
19. Chakov, N. E., Wernsdorfer, W., Abboud, K. A., Hendrickson, D. N., and Christou, G., Dalt. Trans. 2003, 22432248.Google Scholar
20. Brockman, J. T., Abboud, K. A., Hendrickson, D. N., and Christou, G., Polyhedron 22, 17651769 (2003).Google Scholar
21. Coronado, E., Forment-Aliaga, A., Gaita-Arino, A., Gimenez-Saiz, C., Romero, F. M., and Wernsdorfer, W., Agnew. Chem. Int. Ed. 43, 61526156.Google Scholar