Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:31:06.379Z Has data issue: false hasContentIssue false

Magnetic Nanocomposite Aerogels

Published online by Cambridge University Press:  28 January 2011

Anna Corrias
Affiliation:
Dipartimento di Scienze Chimiche and INSTM, Università di Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato (Cagliari), Italy
Danilo Loche
Affiliation:
Dipartimento di Scienze Chimiche and INSTM, Università di Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato (Cagliari), Italy
Maria F. Casula
Affiliation:
Dipartimento di Scienze Chimiche and INSTM, Università di Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato (Cagliari), Italy
Get access

Abstract

Aerogels are regarded as ideal candidates for the design of functional nanocomposites containing supported metal or metal oxide nanoparticles. The large specific surface area together with the open pore structure enables aerogels to effectively host finely dispersed nanoparticles up to the desired loading, to provide nanoparticle accessibility and/or to prevent nanoparticle agglomeration, as required to supply their specific functionalities.

The preparation of highly porous nanocomposite aerogels containing magnetic metal, alloy or metal oxide nanoparticles dispersed into amorphous silica, with high purity and homogeneity, was successfully achieved by a novel sol-gel procedure involving urea-assisted co-gelation of the precursor phases. This method allows fast gelation, giving rise to aerogels with 97% porosity, and it is very versatile allowing to vary composition, loading and average size of the nanoparticles.

The characterization of the morphological and structural features of the nanocomposite aerogels is carried out using different techniques, such as X-ray diffraction, Transmission Electron Microscopy and X-ray Absorption Spectroscopy. The characterization of the magnetic properties is carried out by SQUID magnetometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hüsing, N. and Schubert, U., Angew. Chem. Int. Ed. 37, 22 (1998).10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I3.0.CO;2-I>Google Scholar
2. Pierre, A.C. and Pajonk, G.M., Chem. Rev. 102, 4243 (2002)10.1021/cr0101306Google Scholar
3. Gich, M., Casas, L. I., Roig, A., Molins, E., Sort, J., Surinach, S., Barò, M.D., Munoz, J.S., Morellon, L., Ibarra, M.R. and Noguès, J., Appl. Phys. Lett. 82, 4307 (2003).10.1063/1.1578538Google Scholar
4. Congiu, F., Concas, G., Ennas, G., Falqui, A., Fiorani, D., Marongiu, G., Marras, S., Spano, G. and Testa, A.M., J. Magn. Magn. Mater. 272, 1561 (2005)Google Scholar
5. Hutlova, A., Niznansky, D., Rehspringer, J- L., Estournes, C. and Kurmoo, M., Adv. Mat. 15, 1622 (2003).10.1002/adma.200305305Google Scholar
6. Raj, K., Moskowitz, R. and Casciari, R.;, J. Magn. Magn. Mater. 149, 174 (1995).10.1016/0304-8853(95)00365-7Google Scholar
7. Haefeli, U., Schuett, W., Teller, J. and Zborowski, M., Eds. Scientific and Clinical Applications of Magnetic Carriers (Plenum, 1997).10.1007/978-1-4757-6482-6Google Scholar
8. Kryder, M.H., MRS Bull. 21, 17 (1996).10.1557/S0883769400036319Google Scholar
9. Ayers, M.R., Song, X.Y. and Hunt, A.J., J. Mater. Sci. 31, 6251 (1996).10.1007/BF00354446Google Scholar
10. Casas, L.I., Roig, A., Molins, E., Greneche, J.M., Asenjo, J. and Tejada, J., Appl. Phys. A, 74, 591 (2002).10.1007/s003390100948Google Scholar
11. Cannas, C., Casula, M.F., Concas, G., Corrias, A., Gatteschi, D., Falqui, A., Musinu, A., Sangregorio, C. and Spano, G. J. Mater. Chem. 11, 3180 (2001).10.1039/b104562hGoogle Scholar
12. Saad, A. M., Mazanik, A. V., Kalinin, Yu. E., Fedotova, J. A., Fedotov, A. K., Wrotek, S., Sitnikov, A. V., Svito, I. A., Rev. Adv. Mater. Sci. 8, 152A (2004).Google Scholar
13. MacLaren, J. M., Schulthness, T. C., Butler, B. H., Sutton, R., McHenry, M., J. Appl. Phys. 85, 4833 (1999).10.1063/1.370036Google Scholar
14. Casula, M. F., Corrias, A., Paschina, G., J. Mater. Chem. 12, 1505 (2002).10.1039/b110093aGoogle Scholar
15. Casula, M. F., Corrias, A., Falqui, A., Serin, V., Gatteschi, D., Sangregorio, C., De Julian Fernandez, C., Battaglin, G., Chem. Mater. 15, 2201 (2003).10.1021/cm0217755Google Scholar
16. Casula, M.F., Concas, G., Congiu, F., Corrias, A., Falqui, A., Spano, G., J. Phys. Chem. B 109, 23888 (2005).10.1021/jp0546554Google Scholar
17. Dormann, J. L., Bessais, L., Fiorani, D., J. Phys. C: Solid State Phys. 21, 2015 (1988).10.1088/0022-3719/21/10/019Google Scholar
18. Vestal, C.R., Song, Q., Zhang, Z.J., J. Phys. Chem. B, 108, 18222 (2004).10.1021/jp0464526Google Scholar
19. Buschow, K. H. J., Handbook of Magnetic Materials (North-Holland, 1995) Vol. 8, p 212.Google Scholar
20. Skomski, R. J., Phys.: Condens. Matter 15, r841 (2003).Google Scholar
21. Casu, A., Casula, M.F., Corrias, A., Falqui, A., Loche, D., Marras, S., Sangregorio, C., Phys. Chem. Chem. Phys 10, 1043 (2008).10.1039/B712719GGoogle Scholar