Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:24:39.606Z Has data issue: false hasContentIssue false

Magnetic Field Effect on Photoconductivity of Single-Crystalline Pentacene and Perfluoropentacene Field-Effect Transistors

Published online by Cambridge University Press:  16 March 2012

Song-Toan Pham
Affiliation:
Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan.
Yoshitaka Kawasugi
Affiliation:
Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan.
Hirokazu Tada
Affiliation:
Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan.
Get access

Abstract

Organic magnetoresistance (OMAR) of single-crystalline (SC) pentacene (C22H14) and perfluoropentacene (C22F14) was studied using field-effect transistor structures. The gate voltage effect showed that the OMAR originates from photo-induced current and requires both electrons and holes in the transport channel. The temperature dependence showed the maximum magnetoresistance (MR) ratio up to -6% under light irradiation at approximately 200 K and magnetic field of 80 mT. The charge carrier mobility and the exciton diffusion length were not important factors to determine the MR ratios. The interaction between triplet excitons and traps was thought to govern the OMAR behaviors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Veeraraghavan, G., Nguyen, T. D., Mermer, O., and Wohlgenannt, M., IEEE Transactions on Electron Devices 54, 15711577 (2007).Google Scholar
2. Bobbert, P., Nguyen, T., van Oost, F., Koopmans, B., and Wohlgenannt, M., Physical Review Letters 99, 216801 (2007).Google Scholar
3. Kalinowski, J., Cocchi, M., Virgili, D., Di Marco, P., and Fattori, V., Chemical Physics Letters 380, 710715 (2003).Google Scholar
4. Desai, P., Shakya, P., Kreouzis, T., Gillin, W., Morley, N., and Gibbs, M., Physical Review B 75, 094423 (2007).Google Scholar
5. Desai, P., Shakya, P., Kreouzis, T., and Gillin, W., Physical Review B 76, 235202 (2007).Google Scholar
6. Nishioka, M., Lee, Y.-B., Goldman, a M., Xia, Y., and Frisbie, C. D., Applied Physics Letters 91, 092117 (2007).Google Scholar
7. Reichert, T. and Saragi, T. P. I., Applied Physics Letters 98, 063307 (2011).Google Scholar
8. Laudise, R., Kloc, C., Simpkins, P., and Siegrist, T., Journal of Crystal Growth 187, 449454 (1998).Google Scholar
9. Bagnich, S. A., Niedermeier, U., Melzer, C., Sarfert, W., and von Seggern, H., Journal of Applied Physics 105, 123706 (2009).Google Scholar
10. Najafov, H., Lee, B., Zhou, Q., Feldman, L. C., and Podzorov, V., Nature Materials 9, 938943 (2010).Google Scholar
11. Mermer, O., Veeraraghavan, G., Francis, T., Sheng, Y., Nguyen, D., Wohlgenannt, M., Köhler, A., Al-Suti, M., and Khan, M., Physical Review B 72, 205202 (2005).Google Scholar
12. Cölle, M. and Gärditz, C., Applied Physics Letters 84, 3160 (2004).Google Scholar
13. Ostroverkhova, O., Cooke, D. G., Hegmann, F. a, Anthony, J. E., Podzorov, V., Gershenson, M. E., Jurchescu, O. D., and Palstra, T. T. M., Applied Physics Letters 88, 162101 (2006).Google Scholar
14. Davis, O. A. H. and Bussmann, K., Journal of Vacuum Science & Technology A: Vacuum, Surfaces and Films 22, 1885 (2004).Google Scholar