Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:40:25.798Z Has data issue: false hasContentIssue false

Magnetic Field Dependence of Jc in A T1–1223 Wire; Presence of Pinning and Good Grain Boundary Connectivity.

Published online by Cambridge University Press:  28 February 2011

Toshiya J. Doi
Affiliation:
Hitachi Research Lab. Hitachi Ltd., 4026 Kuji-cho, Hitachi City, Ibaraki 319–12, JAPAN
Toshihide Nabatame
Affiliation:
Hitachi Research Lab. Hitachi Ltd., 4026 Kuji-cho, Hitachi City, Ibaraki 319–12, JAPAN
Michiya Okada
Affiliation:
Hitachi Research Lab. Hitachi Ltd., 4026 Kuji-cho, Hitachi City, Ibaraki 319–12, JAPAN
Toyotaka Yuasa
Affiliation:
Hitachi Research Lab. Hitachi Ltd., 4026 Kuji-cho, Hitachi City, Ibaraki 319–12, JAPAN
Kazuhide Tanaka
Affiliation:
Hitachi Research Lab. Hitachi Ltd., 4026 Kuji-cho, Hitachi City, Ibaraki 319–12, JAPAN
Naomi Inoue
Affiliation:
Hitachi Research Lab. Hitachi Ltd., 4026 Kuji-cho, Hitachi City, Ibaraki 319–12, JAPAN
Atsuko Soeta
Affiliation:
Hitachi Research Lab. Hitachi Ltd., 4026 Kuji-cho, Hitachi City, Ibaraki 319–12, JAPAN
Katsuzo Aihara
Affiliation:
Hitachi Research Lab. Hitachi Ltd., 4026 Kuji-cho, Hitachi City, Ibaraki 319–12, JAPAN
Tomoichi Kamo
Affiliation:
Hitachi Research Lab. Hitachi Ltd., 4026 Kuji-cho, Hitachi City, Ibaraki 319–12, JAPAN
Shin-Peimatsuda
Affiliation:
Hitachi Research Lab. Hitachi Ltd., 4026 Kuji-cho, Hitachi City, Ibaraki 319–12, JAPAN
Get access

Abstract

The existence of effective pinning in single T1-layer 1223 superconductors has been reported [1–3], as opposed to lower values in T1- and Bi-double layer systems, which is intimately related to their crystal structures. In order to investigate the possibility of T1–1223 being applied as a practical superconductor, tape shaped wires of the chemical composition (T10.5Pb0.51 (Sr0.8Ba0.2Ca2Cu3O9were prepared. Transport Jc of T1–1223 was measured to be 1.8 × 104 A/cm2 at 77K in the absence of a magnetic field. These results seem to imply that T1–1223 has, not only effective pinning because of having a more 3-dimensional vortex line lattice like YBa2Cu3O7, but also better grain boundary weak-link performance than YBa2Cu3O7. PresenT1y it appears that T1–1223 may be a superior choice to make better superconducting wire, because of these considerations and of the higher Tc of 120K.

(T10.5Pb0.5)1Sr2CaCu2O7 (T1–1212) also seems to have effective pinning, as well as T1–1223, supporting the idea that shorter Cu-O plane spacing, or absence of thicker insulating region such as T12O2 or Bi2O2 double layer, are beneficial for effective pinning through facilitating a better 3D-like vortex line lattice [4, 5]. Our “1212” and “1223” samples are good counter examples to the 2D pancake-like vortex theory [6, 7].

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Doi, T., Nabatame, T., Kamo, T. and Matsuda, S. P., Third International Superconductive Electronics Conference, Extended Abstracts, June 25–27, 1991, p123.Google Scholar
2. Matsuda, S-P., Doi, T., Soeta, A., Yuasa, T., Inoue, N., Aihara, K. and Kamo, T., to be published in Appl. Phys. Lett.Google Scholar
3. Nabatame, T., Saito, Y., Doi, T., Aihara, K., Kamo, T. and Matsuda, S., To be published in Physica C.Google Scholar
4. Kim, D. H., Gray, K. E., Kampwirth, R. T., Smith, J. C., Richeson, D. S., Marks, T. J. and Eddy, M., Physica C 177, 431(1991).Google Scholar
5. Doi, T., Okada, M., Soeta, A., Yuasa, T., Aihara, K., Kamo, T. and Matsuda, S., Physica C 183, 67(1991).Google Scholar
6. Kes, P. H., Aarts, J., Vinokur, V.M. and van der Beek, C. J., Phys. Rev. Lett. 64, 1063 (1990).Google Scholar
7. Clem, J. R., Physical Review B 43, 7837(1991).Google Scholar
8. Tanaka, S. and Itozaki, H., 27, L662(1988).Google Scholar
9. Roas, B., Cchultz, L. and Saemann-Ischenko, G., Phys. Rev. Lett, 64, 479(1990).CrossRefGoogle Scholar
10. Jin, S., Tiefel, T. H., Sherwood, R. C., van Dover, R. B., Davis, M. E., Kammlott, G. W., Fastnacht, R. A. and Keith, H. D., Appl. Phys. Lett. 52, 2074(1988).Google Scholar
11. Murakami, M., Morita, M., Doi, K., Miyamoto, K. and Hamada, H. Jpn. J. Appl. Phys. 28, L339(1989).CrossRefGoogle Scholar
12. Murakami, M., Mod. Phys. Lett. B4, 285(1990).Google Scholar
13. Okada, M., Nishiwaki, R., Matsumoto, T., Aihara, K. and Matsuda, S., Jpn. J. Appl. Phys. 27, 185(1988).Google Scholar
14. Okada, M., Okayama, A., Morimoto, T., Matsumoto, T., Aihara, K., Seido, M. and Matsuda, S., Advances in Superconductivity II(Springer-Verlag, Tokyo, 1990) p. 269.Google Scholar
15. Nabatame, T., Saito, Y., Aihara, K., Kamo, T. and Matsuda, S.. Third International Symposium on Superconductivity (ISS'90), pp555558.Google Scholar
16. Itozaki, H., Tanaka, S., Higaki, K., Harada, K., Yazu, S. and Toda, K., Istec Workshop on Superconductivity (1989)63.Google Scholar
17. Schmitt, P., Kummeth, P., Schults, L. and Saemann-Ischenko, G., Phys. Rev. Lett. 67, 267(1991).Google Scholar
18. Matsumoto, T., Aihara, K. and Seido, M., Hitachi Review 39, 55(1990).Google Scholar
19. Kumakura, H., Togano, K., Yanagisawa, E., Kase, J. and Maeda, H., Jpn. J. Appl. Phys. 29, L1652(1990).Google Scholar
20. Yeshurun, Y. and Malozemoff, A. P., Cryogenics 29, 258(1989).Google Scholar
21. Dimos, D., Chaudhari, P., Mannhart, J. and LeGoues, F. K., Phys. Rev. Lett. 61, 219 (1988).Google Scholar
22. Tenya, K., Miyajima, H., Haseyama, S., Ishikawa, Y. and Yoshizawa, S., Journal of The Physical Society of Japan, 60, 2324(1991)Google Scholar
23. Kitazawa, K., Kambe, S. and Naito, M., “Strong Correlation and Superconductivity” Eds. Fukuyama, H., Maekawa, S. and Malozemoff, A. P., Springer-Vrlag (Berlin) 1989.Google Scholar
24. Nagasima, T., Watanabe, K., Saito, H. and Asano, Y., Jpn. J. Appl. Phys. 27, L1077 (1988).Google Scholar
25. Matsuda, S. P., Takeuchi, S., Soeta, A., Suzuki, T., Aihara, K. and Kamo, T., Jpn. J. Appl. Phys., 27, 2062(1988).CrossRefGoogle Scholar
26. Soeta, A., Suzuki, T., Takeuchi, S., Kamo, T., Usami, K. and Matsuda, S. P., Jpn. J. Appl. Phys. 28, L1186(1989).Google Scholar
27. Doi, T., Usami, K. and Kamo, T., Jpn. J. Appl. Phys. 29, L57(1990).Google Scholar
28. Subramanian, M. A., Trardi, C. C., Gopalakrishnan, J., Gai, P. L., Calabrese, J. C., Askew, T. R., Flippen, R. B. and Sleight, A. W., Science, 242, 249(1988).Google Scholar
29. Doi, T., Soeta, A., Takeuchi, S., Kamo, T. and Maki, N., Trans. IEE of Japan 110–A, 436(1990).Google Scholar
30. Kwei, G. H. and Subramanian, M. A., Physica C 168, 521(1990).Google Scholar
31. Okada, M., Okayama, A., Morimoto, T., Matsumoto, T., Aihara, K, and Matsuda, S. Jpn. J. Appl. Phys. 27, L185(1988)Google Scholar
32. Doi, T., Morgan, P. E. D., Soeta, A., Inoue, N. work in progress.Google Scholar
33. Palstra, T. T. M., Batlogg, B., Schneemeyer, L. F. and Waszczak, J. V., Phys. Rev. Lett. 61, 1662(1988).Google Scholar
34. Iwasaki, H., Kobayashi, N., Kikuchi, M., Kajitani, T., Syono, Y. Muto, Y. and Nakajima, S., Physica C 159, 301(1989).Google Scholar
35. Palstra, T. T. M., Batlogg, B., van Dover, R. B., Schneemeyer, L. F. and Waszczak, J. V., Appl. Phys. Lett. 54, 763(1989).Google Scholar
36. Y. lye, Tamegai, T., Takeya, H. and Takei, H., Jpn. J. Appl. Phys. 26, L1057(1987).Google Scholar
37. Hasegawa, T. and Kitazawa, K., Jpn. J. Appl. Phys. 29, L434(1990).Google Scholar
38. Jehl, G., Zetterer, T., Otto, H. H., Schutzmann, J., Shulga, S. and Renk, K. F., To be published in Europhys. Lett.Google Scholar