Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T23:50:23.317Z Has data issue: false hasContentIssue false

Magnetic Domain Structure of Nanocrystalline Zr18-xHfxCo82 Ribbons: Effect of Hf

Published online by Cambridge University Press:  14 October 2013

Lanping Yue
Affiliation:
Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588.
I. A. Al-Omari
Affiliation:
Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588. Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588. U.S.A. Department of Physics, Sultan Qaboos University, PC 123, Muscat, Sultanate of Oman
Wenyong Zhang
Affiliation:
Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588. Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588. U.S.A.
Ralph Skomski
Affiliation:
Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588. Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588. U.S.A.
D. J. Sellmyer
Affiliation:
Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588. Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588. U.S.A.
Get access

Abstract

The effect of Hf on the permanent magnetism of nanocrystalline Zr18-xHfxCo82 ribbons (x = 0, 2, 4, and 6) was investigated by magnetic properties measurement and magnetic force microscopy (MFM). Emphasis is on the local magnetic domain structures in polycrystalline rapidly solidified Zr18-xHfxCo82 ribbons for four different samples with small fractions of Hf dopants (x ≤ 6). The investigation of the magnetic properties of the Zr18-xHfxCo82 ribbons revealed that all the samples under investigation are ferromagnetic at room temperature, and the corresponding MFM images show bright and dark contrast patterns with up-down magnetic domain structures. It is found that the saturation magnetization and the coercivity depend on Hf doping concentration x in the samples. For a sample with Hf concentration x = 4, the maximum energy product (BH)max value is 3.7 MGOe. The short magnetic correlation length of 131 nm and smallest root-mean-square phase shift value of 0.680 were observed for x = 4, which suggests the refinement of the magnetic domain structure due to weak intergranular exchange coupling in this sample. The above results indicate that suitable Hf addition is helpful for the magnetic domain structure refinement, the coecivity enhancement, and the energy-product improvement of this class of rare-earth-free nanocrystalline permanent-magnet materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jones, N., Nature 472, 22 (2011).CrossRefGoogle Scholar
Skomski, R., Shield, J., and Sellmyer, D. J., Magn. Techn. Int. 222, 22 (2011).Google Scholar
Al-Omari, I. A., Zhang, W. Y., Yue, L. P., Skomski, R., Shield, J. E., Li, X., and Sellmyer, D. J., IEEE Trans. Magn. 49(7), 3394 (2013).CrossRefGoogle Scholar
Zhang, W. Y., Valloppilly, S. R., Li, X., Skomski, R., Shield, J. E., and Sellmyer, D. J., IEEE Trans. Magn. 48, 3603 (2012).CrossRefGoogle Scholar
Chen, L. Y., Chang, H. W., Chiu, C. H., Chang, C. W., and Chang, W. C., J. Appl. Phys. 97, 10F307 (2005).CrossRefGoogle Scholar
Zhang, J., Sun, Q., Wang, W., and Su, F., J. Alloys Comp. 474, 48 (2009).CrossRefGoogle Scholar
Okai, D., Nagai, R., Motoyama, G., Fukami, T., Yamasaki, T., Yokoyama, Y., Kimura, H. M., and Inoue, A., Physica C 470, 1048 (2010).CrossRefGoogle Scholar
Pareti, L., Solzi, M., and Paoluzi, A., J. Appl. Phys. 73, 2941 (1993).CrossRefGoogle Scholar
Zhang, M., Zhang, J., Wu, C., Wang, W., and Su, F., Physica B 405, 1725 (2010).CrossRefGoogle Scholar
Saito, T., Appl. Phys. Lett. 82, 2305 (2003).CrossRefGoogle Scholar
Sellmyer, D.J., Xu, Y.F., Yan, M.L., Sui, Y., Zhou, J., Skomski, R., J. Magn. Magn. Mater. 303, 302308 (2006).CrossRefGoogle Scholar
Hadjipanayis, G.C., Sellmyer, D.J., and Brandt, B., Phys. Rev. B23, 3349 (1981).CrossRefGoogle Scholar
Hubert, A., Schäfer, R., Magnetic Domains: the Analysis of Magnetic Microstructures, (Berlin: Springer, 1998), pp. 329, 409, 555.Google Scholar
Powers, N., Yan, M., Gao, L., Liou, S. H., and Sellmyer, D. J., J. Appl. Phys. 91, 8641 (2002).CrossRefGoogle Scholar
Rastei, M. V., Colis, S., and Bucher, J. P., Chem. Phys. Lett. 417, 217 (2006).CrossRefGoogle Scholar
George, T. A., Skomski, R., and Sellmyer, D. J., J. Appl. Phys. 105, 07B736 (2009).CrossRefGoogle Scholar
Szmaja, W., Grobelny, J., Cichomski, M., Hirosawa, S., and Shigemoto, Y., Acta Materialia 59, 531 (2011).CrossRefGoogle Scholar
Fang, Y., Yin, X., Zhao, R., Valloppilly, S., Li, W., Zhu, M., and Liou, S. H., J. Appl. Phys. 111, 07A734 (2012).CrossRefGoogle Scholar
Digital Instruments, Veeco Metrology Group, Scanner Probe Microscopy Training Notebook, Version 3.0 (2000) P.40.Google Scholar