Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T23:19:59.007Z Has data issue: false hasContentIssue false

Magnetic Behavior and Structure of Electrodeposited, Mechanically Hard Fe-C and Fe-Ni-C Alloys

Published online by Cambridge University Press:  14 March 2011

A. S. M. A. Haseeb
Affiliation:
Department of Materials Science and Engineering, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
Y. Hayashi
Affiliation:
Department of Materials Science and Engineering, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
M. Masuda
Affiliation:
Department of Materials Science and Engineering, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
Get access

Abstract

Iron-carbon based hard, martensitic alloys are usually produced by conventional high temperature heat treatment. In the present work, the galvanostatic electrodeposition method has been employed to obtain hard Fe-0.96 mass % C and Fe-15.4 mass% Ni-0.70 mass% C alloys at around room temperature. The alloys have been investigated by SEM, XPS, XRD, and microhardness measurements, and their magnetic properties have been studied by vibrating sample magnetometer.

The as-deposited alloys were found to possess high mechanical hardness, 750-810 HV. Both alloys exhibit a smoother surface morphology as compared to a non-alloyed iron film obtained under similar electrochemical conditions. The coercive force of the as-deposited Fe-C and Fe-Ni-C alloys is 3930 and 494 A.m−1 respectively. In comparison, pure iron film deposited under similar conditions possesses a coercive force of 1592 A.m−1. The Fe-Ni-C alloy has a combination of high mechanical hardness and relatively soft magnetic properties, which may be of interest in potential applications requiring both soft magnetic properties and improved tribological performance. The effects of annealing on the behavior of the alloys are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Izaki, M. and Omi, T., Metall. Mater. Trans., 27A, 483 (1996).10.1007/BF02648429Google Scholar
2. Izaki, M., Enomoto, H., Nakae, A., Terada, S., Yamauchi, E. and Omi, T., J. Surf. Finish. Soc. Jpn., 45, 1303 (1994).10.4139/sfj.45.1302Google Scholar
3. Izaki, M., Enomoto, H. and Omi, T., J. Jpn. Inst. Metals, 56, 636 (1992).10.2320/jinstmet1952.56.6_636Google Scholar
4. Wonterghem, J. van, Morup, S., Koch, C. J. W., Charles, S. W. and Wells, S., Nature, 322, 622 (1986).10.1038/322622a0Google Scholar
5. Wonterghem, J. van and Morup, S., J. Phys. Chem., 92, 1013 (1988).10.1021/j100316a004Google Scholar
6. Morisako, A., Matsumoto, M. and Naoe, M., J. Appl. Phys., 69, 5619 (1991).10.1063/1.347941Google Scholar
7. Yoshida, O. and Kitaori, N., Denki Kagaku, 66, 1014 (1998).Google Scholar
8. Zieren, V., Jongh, M. De, Groenou, A. Broese Van, Zon, J. B. A. D. Van, Lasinski, P. and Theunissen, G. S. A. M., IEEE Trans. Magn., 30, 340 (1994).10.1109/20.312284Google Scholar
9. Chastain, J., Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Eden Prairie, MN (1992).Google Scholar
10. Leith, S. D., Ramli, S. and Schwartz, D. T., J. Electrochem. Soc., 146, 1431 (1999).10.1149/1.1391781Google Scholar
11. Grimmett, D. L., Schwartz, M. and Nobe, K., J. Electrochemical Soc., 140, 973 (1993).10.1149/1.2056238Google Scholar
12. Jack, K. H., J. Iron Steel Inst., 169, 26 (1951).Google Scholar
13. Nagakura, S., Hirotsu, Y., Kusunoki, M., Suzuki, T. and Nakamura, Y., Metall. Trans., 14A, 1025 (1983).10.1007/BF02659851Google Scholar
14. Taylor, K. A., Olsen, G. B., Cohen, M. and Sande, J. B. Vander, Metall. Trans., 20A, 2749 (1989).10.1007/BF02670168Google Scholar
15. Uwakweh, O. N. C., Genin, J.-M. R. and Silvain, J.-F., Metall. Trans. 22A, 797 (1991).10.1007/BF02658989Google Scholar
16. Haseeb, A. S. M. A., Nishida, T., Masuda, M. and Hayashi, Y., Scripta Mater., 2000 (in press).Google Scholar
17. Sherman, A. M., Eldis, G. T. and Cohen, M., Metall. Trans., 14A, 995 (1983).10.1007/BF02659847Google Scholar
18. McCurrie, R. A., Ferromagnetic Materials: Structure and Properties, Academic Press, London (1994).Google Scholar