Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:38:59.688Z Has data issue: false hasContentIssue false

Magnetic anisotropy, sress, and martensitic transformation in Ni-Mn-Ga thin films on Si(100) wafer

Published online by Cambridge University Press:  21 March 2011

Michael Hagler
Affiliation:
Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, ID, 83725
Volodymyr A. Chernenko
Affiliation:
Institute of Magnetism, Kyiv, 03142, Ukraine CNR-IENI, Lecco, 23900, Italy
Makoto Ohtsuka
Affiliation:
IMRAM, Tohoku University, Sendai, 980-8577, Japan
Stefano Besseghini
Affiliation:
CNR-IENI, Lecco, 23900, Italy
Peter M¨llner
Affiliation:
Materials Science and Engineering, Boise State University, 1910 University Dr., Boise, ID, 83725
Get access

Abstract

Ni-Mn-Ga magnetic shape memory alloys (MSMAs) tend to undergo a large deformation upon the application of a magnetic field. This deformation is attributed to twin boundary motion in the martensitic phase. In an effort to harness the shape memory effect for use in sensors, actuators, and micro-devices, the behavior of Ni-Mn-Ga thin films is attracting attention. Substrate curvature measurements were done with Ni-Mn-Ga films with a thickness of 2.0 μm sputter-deposited on Si(100) wafer having amorphous 500 nm thick SiNx buffer layer. During the wafer bow curvature measurements, stress levels of 0.65 GPa were attained. The martensitic transformation is manifested by a stress-temperature hysteretic loop. Measurements of magnetization curves were carried out on Ni-Mn-Ga films with thickness between 0.5 and 3.0 μm. A change of the magnetization behavior from the easy-plane type for thin films to the out-of-plane easy-axis type for thick films is observed. This effect is caused by the interplay between different contributions to the overall anisotropy of film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Murray, S. J., Marioni, M., Allen, S. M., OíHandley, R. C., and Lograsso, , Appl. Phys. Lett. 77, 886 (2000).Google Scholar
[2] Sozinov, A., Likhachev, A.A., Lanska, N., and Ullakko, K., Appl. Phys. Lett. 80, 1746 (2002).Google Scholar
[3] Müllner, P., Chernenko, V.A., and Kostorz, G., J. Appl. Phys. 95, 1531 (2004).Google Scholar
[4] Müllner, P., Chernenko, V.A., and Kostorz, G., J. Magn. Magn. Mater. 267, 325 (2003).Google Scholar
[5] Kostorz, G. and Müllner, P., Z. f. Metallk. 96, 703, (2005).Google Scholar
[6] Müllner, P., Mukherji, D., Aguirre, M., Erni, R., and Kostorz, G., Proc. “Solid-to-solid phase transmformations in inorganic Materials”, Vol.2, Eds. Howe, J. M., Laughlin, D. E., Lee, J. K., Dahmen, U., and Soffa, W., TMS, 2005, pp. 171.Google Scholar
[7] Chernenko, V.A., Lívov, V.A., Pasquale, M., Besseghini, S., Sasso, C., and Polenur, D.A., Int. J. Appl. Electromag. Mech. 12, 3 (2000).Google Scholar
[8] Ullakko, K., Huang, J.K., Kantner, C., O'Handley, R.C., and Kokorin, V.V., J. Appl. Phys. 69, 1966 (1996).Google Scholar
[9] Ullakko, K., J. Mater. Eng. Perform. 5, 405 (1996).Google Scholar
[10] Tellinen, J., Suorsa, I., Jääskeläinen, A., Aaltio, I., and Ullakko, K., Proc. 8th Intern. Conf. Actuator 2002, Bremen, Germany, June 10–12 (2002), pp. 566.Google Scholar
[11] Söderberg, O., Ge, Y., Sozinov, A., Hannula, S.-P., and Lindroos, V. K., Smart Mater. Struct. 14, S223 (2005).Google Scholar
[12] Müllner, P., Chernenko, V.A., and Kostorz, G., Scripta Mater. 49, 129 (2003).Google Scholar
[13] Suorsa, I., Pagounis, E., and Ullakko, K., Appl. Phys. Lett. 84, 4658 (2004).Google Scholar
[14] Straka, L. and Heczko, O., Scripta Mater. 54, 1549 (2006).Google Scholar
[15] Kakeshita, T., Fukuda, T., and Takeuchi, T., Mater. Sci. Eng. A 438, 12 (2006).Google Scholar
[16] Chernenko, V. A., Anton, R. Lopez, Kohl, M., Barandiaran, J. M., Ohtsuka, M., Orue, I., and Besseghini, S., Acta Mater. 54, 5461 (2006).Google Scholar
[17] Chernenko, V. A., Kohl, M., Doyle, S., M¸llner, P., and Ohtsuka, M., Scripta Mater. 54, 1287 (2006).Google Scholar
[18] Ohtsuka, M., Matsumoto, M., Koike, K., Takagi, T., and Itagaki, K., J. Magn. Magn. Mater. in press (2007)Google Scholar
[19] Chernenko, V. A., Hagler, M., M¸llner, P., Kniazkyi, V. M., Lívov, V. A., Ohtsuka, M., and Besseghini, S., J. Appl. Phys. 101, 053909 (2007).Google Scholar
[20] Nix, W. D., Metall.. Trans. A 20A, 2217 (1989).Google Scholar
[21] Otsuka, K. and Wayman, C. M., “Shape Memory Materials”, Cambridge University Press, Cambridge 1998, pp. 126.Google Scholar
[22] Roytburd, A. L., Kim, T. S., Su, Q., Slutsker, J., and Wuttig, M., Acta Mater. 46, 5095 (1998).Google Scholar
[23] Hesemann, H. Th., Müllner, P., Kraft, O., and Arzt, E., MRS Symp. Proc. 594, 219 (2000).Google Scholar
[24] Hesemann, H. Th., M¨llner, P., Kraft, O., and Arzt, E., J. Phys. France IV 112, 107 (2003).Google Scholar