Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:34:18.606Z Has data issue: false hasContentIssue false

Magnetic Anisotropy in Epitaxial Ni/Cu (100) Thin Films

Published online by Cambridge University Press:  03 September 2012

G. Bochi
Affiliation:
Massachusetts Institute of Technology, Cambridge MA 02139
C. A. Ballentine
Affiliation:
Massachusetts Institute of Technology, Cambridge MA 02139
H. E. Inglefield
Affiliation:
Massachusetts Institute of Technology, Cambridge MA 02139
S. S. Bogomolov
Affiliation:
Massachusetts Institute of Technology, Cambridge MA 02139
C. V. Thompson
Affiliation:
Massachusetts Institute of Technology, Cambridge MA 02139
R. C. Ohandley
Affiliation:
Massachusetts Institute of Technology, Cambridge MA 02139
Get access

Abstract

Epitaxial Ni/Cu (001) films grown on Si (001) by Molecular Beam Epitaxy were studied in-situ using the Surface Magneto-optic Kerr Effect (SMOKE) and ex-situ with a Vibrating Sample Magnetometer (VSM). Perpendicular Magnetization is observed for Ni thicknesses 15 Å ≤ h ≤ 60 Å and fully in-plane magnetization for h ≥ 70 Å when the films are characterized in-situ. The reversal in magnetic anisotropy observed in-situ at 60 Å shifts to 125 Å when the films are exposed to air. 100 Å Ni films deposited on Cu1−x-Nix alloy substrates also show a reversal in magnetic anisotropy as x is changed. These results suggest that changes in magnetic anisotropy correlate with misfit strain accommodation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gay, J. G. and Richter, Roy, Phys. Rev. Lett. 56, 2728 (1986).Google Scholar
[2] Koon, N. C., Jonker, B. T., Volkening, F. A., Krebs, J. J., and Prinz, G. A., Phys. Rev. Lett. 59, 2463 (1987).Google Scholar
[3] Stampanoni, M., Vaterlaus, A., Aeschlimann, M., and Meier, F., Phys. Rev. Lett. 59, 2483 (1987).Google Scholar
[4] Heinrich, B., Urquhart, K. B., Arroti, A. S., Cochran, J. F., Myrtle, K., and Purcell, S. T., Phys. Rev. Lett. 59, 1756 (1987).Google Scholar
[5] Ballentine, C. A., Fink, R. L., Arayat-Pochet, J., and Erskine, J. L., Appl. Phys. A 49, 459 (1989).Google Scholar
[6] Pescia, D., Stampanoni, M., Bona, G. L., Vaterlaus, A., Willis, R. F., and Meier, F., Phys. Rev. Lett., 933 (1987).Google Scholar
[7] Liu, C., Moog, E. R., and Bader, S. D., Phys. Rev. Lett. 60, 2422 (1988).Google Scholar
[8] Pappas, D. P., Kamper, K. P., Miller, B. P., Hopster, H., Fowler, D. E., Luntz, D. C., Brundle, C. R., and Shen, Z.-X., J. Appl. Phys. 69, 5209 (1991).Google Scholar
[9] Allenspach, R. and Bischof, A., Phys. Rev. Lett. 69, 3385 (1992).Google Scholar
[10] Thomassen, J., May, F., Feldmann, B., Wuttig, M., and Ibach, H., Phys. Rev. Lett. 69, 3831 (1992).Google Scholar
[11] Ballentine, C. A., Ph. D. Thesis, University of Texas at Austin, 1989.Google Scholar
[12] Chang, Chin-An, J. Appl. Phys. 68, 4763 (1990).Google Scholar
[13] Chappert, C. and Bruno, P., J. Appl. Phys. 64, 5736 (1988).Google Scholar
[14] Lee, C. H., He, Hui, Lámelas, F. J., Vávra, W., Uher, C., and Clarke, Roy, Phys. Rev. B 42, 1066 (1990).Google Scholar
[15] Inglefield, H. E., Ballentine, C.A., Bochi, G., Bogomolov, S. S., O'Handley, R. C., and Thompson, C. V., Mater. Res. Soc. Proc. 308 (in press, 1993).Google Scholar