Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T19:35:33.304Z Has data issue: false hasContentIssue false

Magnetic and Electronic Transport Properties of Single Crystal La0.64Pb0.36MnO3

Published online by Cambridge University Press:  10 February 2011

Jihui Yang
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109
Siqing Hu
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109
Ctirad Uher
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109
P. D. Han
Affiliation:
Department of Material Science and Engineering Science and Technology Center for Superconductivity, University of Illinois at Urbana-Champaign, Urbana, IL 61801
D. A. Payne
Affiliation:
Department of Material Science and Engineering Science and Technology Center for Superconductivity, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Get access

Abstract

We studied the magnetic and electronic transport properties of a single crystal sample of La0.64Pb0.36MnO3 in the temperature range 5 K to 350 K and magnetic field up to 5.5 T. A magnetic transition is found at 210 K. The single crystal sample is ferromagnetic below the transition temperature (Tc) and becomes paramagnetic at temperatures T > Tc. Magnetization measurements along three different orthorhombic crystal axes show no significant difference. The magnetoresistance approaches a maximum value of about -60% at Tc in 5 T magnetic field strength and has qualitatively different field dependence below and above Tc. The scaling behavior between resistivity and magnetic moment is examined for temperatures both below and above the transition. A low temperature (T<15 K) dp / dT < 0 effect is attributed to possible quantum tunneling of carriers between neighbouring distortions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jonker, G. H. and Van Santen, J. H., Physica (Utrecht) 16, 337, 599 (1950).Google Scholar
2. Zener, C., Phys. Rev. 82, 403 (1951).Google Scholar
3. Anderson, P. W. and Hasegawa, H., Phys. Rev. 100, 675 (1955).Google Scholar
4. deGennes, P. G., Phys. Rev. 118, 141 (1960).Google Scholar
5. Millis, A. J., Littlewood, P. B. and Shraiman, B. L., Phys. Rev. Lett. 74, 5144 (1995).Google Scholar
6. Chen, B., Rojo, A. G., Uher, C., Ju, H. L. and Greene, R. L., Phys. Rev. B 55, 1 (1997).Google Scholar
7. Morrish, A. H., Evans, B. J., Eaton, J. A. and Leung, L. K., Can. J. Phys. 47, 2961 (1969).Google Scholar
8. Ju, H. L., Gopalakrishnan, J., Peng, J. L., Li, G. C. X. Qi., Venkatesan, T. and Greene, R. L., Phys. Rev. B 51, 6143 (1995).Google Scholar
9. Jaime, M., Salamon, M. B., Pettit, K., Rubinstein, M., Treece, R. E., Horwitz, J. S. and Chrisey, D. B., Appl. Phys. Lett. 68, 1576 (1996).Google Scholar
10. Jaime, M., Salamon, M. B., Rubinstein, M., Treece, R. E., Horwitz, J. S. and Chrisey, D. B., Phys. Rev. B 54, 11914 (1996).Google Scholar
11. Mott, N. F. and Davis, E. A., Electronic Processes in Non-crystalline Materials (Oxford University Press, New York, 1979).Google Scholar
12. Hundley, M. F., Hawley, M., Heffner, R. H., Jia, Q. X., Neumeier, J. J., Tesmer, J., Thompson, J. D. and Wu, X. D., Appl. Phys. Lett. 67, 860 (1995).Google Scholar
13. Chen, B., Uher, C., Morelli, D. T., Mantese, J. V., Mance, A. M. and Micheli, A. L., Phys. Rev. B 53, 5094 (1996).Google Scholar