Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:16:50.098Z Has data issue: false hasContentIssue false

Macro-Trench Studies of Surface Reaction Probability of a-Si:H Film Growth

Published online by Cambridge University Press:  21 February 2011

A. Nuruddin
Affiliation:
Coordinated Science Laboratory and the Department of Materials Science and Engineering, University of Illinois, Urbana IL 61801
J. R. Doyle
Affiliation:
Coordinated Science Laboratory and the Department of Materials Science and Engineering, University of Illinois, Urbana IL 61801
J. R. Abelson
Affiliation:
Coordinated Science Laboratory and the Department of Materials Science and Engineering, University of Illinois, Urbana IL 61801
Get access

Abstract

Using a “macro-trench” technique, the surface reaction probabilities β of the a-Si:H growth precursors for remote hollow cathode silane discharge (HC) and reactive magnetron sputter deposition (RMS) are measured. Both deposition methods produce state of the art photo-electronic quality a-Si:H. For the HC case, β= 0.28 ± 0.05, whereas for RMS deposition β ≈ 0.97 ± 0.05. We conclude that β is not universally correlated with film quality, and discuss mitigating factors present in RMS deposition that permit high quality film to be deposited despite the high film precursor reactivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pinarbasi, M., Maley, N., Myers, A. and Abelson, J. R., Thin Solid Films 171, 217 (1989).Google Scholar
2. Tsai, C. C., Knights, J. C., Chang, G., and Wacker, B., J. Appl. Phys. 59 (8), 2998 (1986).Google Scholar
3. Matsuda, A., Nomoto, K., Takeuchi, Y., Suzuki, A., Yuuki, A., and Perrin, J., Surf. Sci. 227, 50 (1990).Google Scholar
4. Doughty, D. A., Doyle, J. R., Lin, G. H., and Gallagher, A., J. Appl. Phys. 67 (10), 6220 (1990).Google Scholar
5. Nuruddin, A., Doyle, J. R., and Abelson, J. R., to be published.Google Scholar
6. Knights, J. C., in Plasma Synthesis and Etching of Electronic Materials, ed. Chang, R. P. H. and Abeles, B. (MRS Proc. 38, Pittsburg, PA, 1985), p. 371.Google Scholar
7. Myers, A. M., Ruzic, D. N., Maley, N., Doyle, J., and Abelson, J. R., in Amorphous Silicon Technology - 1990. ed. Madan, A. et al. (MRS Proc. 192, 1990), p. 595.Google Scholar
8. Ho, P., Breiland, W. G., and Buss, R. J., J. Chem. Phys. 91, 2627 (1989).Google Scholar
9. Abelson, J. R., Maley, N., Doyle, J. R., Feng, G. F., Fitzner, M., Katiyar, M., Mandreli, L., Myers, A. M., Nuruddin, A., Ruzic, D. N., and Yang, S., in Amorphous Silicon Technology - 1991, ed. Madan, A. et al. (MRS Proc. 219, Pittsburg PA 1991), p. 619.Google Scholar
10. Doughty, D. A., and Gallagher, A., J. Appl. Phys. 67, 139 (1990).Google Scholar