Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-07T12:59:58.503Z Has data issue: false hasContentIssue false

Luminescence Spectroscopy on Individual Nanostructures and Impurity Atoms Using Stm and Sem

Published online by Cambridge University Press:  15 February 2011

Lars Samuelson
Affiliation:
Lund University, Department of Solid State Physics, Box 118, S-221 00, Lund, Sweden
Anders Gustafsson
Affiliation:
Lund University, Department of Solid State Physics, Box 118, S-221 00, Lund, Sweden
Dan Hessman
Affiliation:
Lund University, Department of Solid State Physics, Box 118, S-221 00, Lund, Sweden
Joakim Lindahl
Affiliation:
Lund University, Department of Solid State Physics, Box 118, S-221 00, Lund, Sweden
Lars Montelius
Affiliation:
Lund University, Department of Solid State Physics, Box 118, S-221 00, Lund, Sweden
Anders Petersson
Affiliation:
Lund University, Department of Solid State Physics, Box 118, S-221 00, Lund, Sweden
Mats-Erik Pistol
Affiliation:
Lund University, Department of Solid State Physics, Box 118, S-221 00, Lund, Sweden
Get access

Abstract

In the exploration of the nano-world of semiconductors there is a strong focus on low-dimensional structures and ultra-small devices. Two fundamental problems, which challenge progress in this field are: (i) large ensembles of nano-objects, like Quantum Dots (QDs), do not have identical geometrical shapes and electronic properties, and, (ii) the properties of a low-dimensional structure can be dominated by a few impurity atoms, whereas the properties of a macroscopic structure is determined by the quasi-continuous background of dopant impurities. To allow QDs and discrete impurities to be studied, novel experimental techniques are required. In this paper we describe how local luminescence has been excited from single QDs using electrons injected from a Scanning Electron Microscope (SEM), from the tip of a Scanning Tunneling Microscope (STM) or using highly focused photons for excitation. We present images of QDs as well as characteristic spectra of individual QDs. We finally show how the local character of the excitation enables us to excite and image individual impurities in low-dimensional structures, including the measurement of characteristic emission spectra from a single impurity atom in GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See Weisbuch, e.g. C. and Vinter, B., Quantum Semiconductor Structures: Fundamentals and Applications, (Academic, San Diego, 1991).Google Scholar
2. Marzin, J. Y., Gérard, J.-M., Izraël, A., Barrier, D., and Bastard, G, Phys. Rev. Lett. 73, 716 (1994)Google Scholar
3. Hess, H. F., Betzig, E., Harris, T. D., Pfeiffer, L. N., and West, K. W., Science 264, 1740 (1994)Google Scholar
4. Betzig, E. and Trautman, J. K., Science 257, 189 (1992)Google Scholar
5. Grober, R. D., Harris, D., Trautman, J. K., Betzig, E., Wegscheider, W., Pfeiffer, L. and West, K., Appl. Phys. Lett. 64, 1421 (1994)Google Scholar
6. Brunner, K., Abstreiter, G., Böhm, G., Tränkle, G., and Weimann, G., Phys. Rev. Lett. 73, 1138 (1994)Google Scholar
7. Christen, J., Kapon, E., Grundman, M., Hwang, D. M., Joschko, M., and Bimberg, D., Phys. Stat. Sol. B 173, 307 (1992) and references therein.Google Scholar
8. J. K. Gimzewski,Reihl, B., Coombs, J. H., and Schlittler, R. J. Microscopy 152, 325 (1988)Google Scholar
9. Abraham, D. L., Veider, A., Schönenberger, Ch., Meier, H. P., Arent, D. J. and Alvarado, S.F. Appl. Phys. Lett. 56, 1564 (1990)Google Scholar
10. Berndt, R., Baratoff, A. and Gimzewski, J. K. in Proceedings of the NATO Advanced Study Inst. Basic Concepts andApplications of Scanning Tunneling Microscopy (STM) and Related Techniques, Erice; Italy; April 17–29, 1989 (Kluver, Dordrecht, 1990)Google Scholar
11. Alvarado, S. F., Renaud, Ph., Abraham, D.L., Schtinenberger, Ch., Arent, D.J. and Meier, H. P. J. Vac. Sci. Technol. B 9, 409 (1991)Google Scholar
12. Montelius, L., Pistol, M-E. and Samuelson, L., Ultramicroscopy 42– 44, 210 (1992)Google Scholar
13. Samuelson, L., Lindahl, J., Montelius, L. and Pistol, M-E., Phys. Script. T 42, 149 (1992)Google Scholar
14. Pfister, M., Johnsson, M. B., Alvarado, S. F., Salemink, H. W. M., Marti, U., Martin, D., Morier-Genoud, F. and Reinhart, F. K., Appl. Phys. Lett. 65, 1168 (1994)Google Scholar
15. L Samuelson, Gustafsson, A., Lindahl, J., Montelius, L., Pistol, M.-E., Maim, J.-O., Vermeire, G. and Demester, P. J. Vac. Sci. Techn. B 12, 2521 (1994)Google Scholar
16. Gustafsson, A., Ph D Thesis, Lund University, 1991Google Scholar
17. Carlsson, N., Seifert, W., Petersson, A., Castrillo, P., Pistol, M.-E., and Samuelson, L., Appl. Phys. Lett. 65, 3093 (1994) and references therein; D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. DenBaars, and P. M. Petroff, Apl. Phys. Lett. 63, 3203 (1993)Google Scholar
18. Ralls, K. S., Skocpol, W. J., Jackel, L. D., Howard, R. E., Fetter, L. A., Epworth, R. W., and Tennant, D. M., Phys. Rev. Lett. 52, 228 (1984)Google Scholar
19. Dellow, M. W., Beton, P. H., Langerak, C. J. G. M., Foster, T. J., Main, P. C., Eaves, L., Henini, M., Beaumont, S. P., and Wilkinson, C. D. W., Phys. Rev. Lett. 68, 1754 (1992)Google Scholar