Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T17:25:57.092Z Has data issue: false hasContentIssue false

Luminescence Properties of Silicon Oxynitride Films

Published online by Cambridge University Press:  28 February 2011

T. Fischer
Affiliation:
Technical University of Munich, Physik-Department E16, D-85747 Garching, Germany
T. Muschik
Affiliation:
Technical University of Munich, Physik-Department E16, D-85747 Garching, Germany
R. Schwarz
Affiliation:
Technical University of Munich, Physik-Department E16, D-85747 Garching, Germany
D. Kovalev
Affiliation:
Technical University of Munich, Physik-Department E16, D-85747 Garching, Germany
F. Koch
Affiliation:
Technical University of Munich, Physik-Department E16, D-85747 Garching, Germany
Get access

Abstract

Silicon oxynitride films, deposited by chemical vapour deposition using a high He dilution are investigated with respect to their photoluminescence properties. At low temperatures the PL spectra, which show broad maxima around 2 eV, consist of two contributions with different decay times: a ns-fast and a ms-slow component, the slow one disappearing above 80 K. To account for these findings and for absorption measurements, a model is proposed to describe the structure of the samples consisting of inclusions of Si rich regions in an a-SiOxNy:H matrix with a common molecular aggregate as luminescence center. The different PL lifetimes supposedly result from different feeding mechanisms. Such a behaviour may be present in oxidized porous Si as well.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sussmann, R.S. and Ogden, R., Phil. Mag. B 44, 137 (1981).Google Scholar
2 Street, R.A. and Knights, J.C., Phil. Mag. B 42, 551 (1980).Google Scholar
3 Carius, R., Jahn, K., Siebert, W., and Fuhs, W., J. Lum. 31&32, 354 (1984).Google Scholar
4 Boonkosum, W., Kruangam, D., and Panyakeow, S., Jap. J. Appl. Phys. 32, 1534 (1993).Google Scholar
5 Prokes, S., Appl. Phys. Lett. 62, 3244 (1993).Google Scholar
6 Tsybeskov, L., Vandyshev, Ju.V., and Fauchet, P.M., Phys. Rev. B 42, 7821 (1994).Google Scholar
7 Gardelis, S., Hamilton, B., Glanfield, A., Pettifer, R.F., and Smith, A., Proc. 22nd Int. Conf. Phys. Semicond., Vancouver (1994), in press.Google Scholar
8 Hayashi, S. et al. , Jap. J. Appl. Phys. 32, 3840 (1993).Google Scholar
9 Kovalev, D.I., Yaroshetzkij, I.D., Muschik, T., Petrova-Koch, V., Koch, and F., Appl. Phys. Lett. 64, 214 (1994).Google Scholar
10 Bustarret, E., Ligeon, M., and Ortega, L., Sol. State Comm. 83, 461 (1992) and E. Bustarret, J. Cali, Y. Cros, M. Brunel, I. Mihalcescu, and M. Ligeon, J. Non Cryst. Sol. 164-166, 937 (1993).Google Scholar
11 Zacharias, M., Freistedt, H., Stolze, F., Drüsedau, T.P., Rosenbauer, M., and Stutzmann, M., J. Non Cryst. Sol. 164–166, 1089 (1993).Google Scholar
12 Rostaing, J.C., Cros, Y., Gujrathi, S.C., and Poulain, S., J. Non Cryst. Sol. 97&98, 1051 (1987).Google Scholar
13 Siebert, W., Carius, R., Fuhs, W., and Jahn, K., phys. stat. sol. (b) 140, 311 (1987).Google Scholar
14 Higashi, G.S. and Kastner, M.A., Phil. Mag. B 47, 83 (1983).Google Scholar
15 Tauc, J., in "Amorphous and Liquid Semiconductors", edited by Tauc, J. (Academic Press, New York, 1974).Google Scholar
16 Tsang, C. and Street, R.A., Phys. Rev. B 19, 3027 (1979).Google Scholar
17 Muschik, T., "Lichtemission aus amorphem und mikroporösem Silizium", Doctoral Dissertation, Technical University of Munich (1993).Google Scholar