Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:09:31.140Z Has data issue: false hasContentIssue false

Luminescence Properties of InxGa1-xAs-GaAs Strained-Layer Superlattices

Published online by Cambridge University Press:  26 February 2011

N. G. Anderson
Affiliation:
Department of Electrical and Computer Engineering North Carolina State University Raleigh, NC 27695–7911
W. D. Laidig
Affiliation:
Department of Electrical and Computer Engineering North Carolina State University Raleigh, NC 27695–7911
G. Lee
Affiliation:
Department of Electrical and Computer Engineering North Carolina State University Raleigh, NC 27695–7911
Y. Lo
Affiliation:
Department of Electrical and Computer Engineering North Carolina State University Raleigh, NC 27695–7911
M. Ozturk
Affiliation:
Department of Electrical and Computer Engineering North Carolina State University Raleigh, NC 27695–7911
Get access

Abstract

The low-temperature (20K) photoluminescence of InxGa1-xAs and InxGal-xAs - GaAs strained-layer superlattices (SLS's) grown by molecular beam epitaxy (MBE) is investigated. Data are presented for thick (bulk) epitaxial layers grown directly on GaAs and for relatively-thin (˜600Å) InxGa1-xAs layers under biaxial compression. Data are also presented for two series of SLS's. In the two series of SLS's, the InxGa1-xAs layer thickness (Lz) is held constant while only the GaAs layer thickness (LB) is varied. The photoluminescence (PL) spectra of the crystals are useful in analyzing the effects of biaxial strain, carrier confinement, and barrier layer thicknesses in SLS's. Results are compared with calculations based upon a modified Kronig-Penney model which incorporates the appropriate deformation potentials for SLS analysis. This type of analysis, in agreement with experimental data, suggests that the electron-to-light-hole transition can be lower in energy than the electron-to-heavy-hole transition in SLS's, depending upon layer thickness and crystal composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
2. Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 32, 265 (1976).CrossRefGoogle Scholar
3. Osbourn, G. C., J. Appl. Phys. 53, 1586 (1982).Google Scholar
4. Osbourn, G. C., Biefeld, R. M., and Gourley, P. L., Appl. Phys. Lett. 41, 172 (1982).Google Scholar
5. Laidig, W. D., Peng, C. K., and Lin, Y. F., J. Vac. Sci. Technol. B2, 181 (1984).CrossRefGoogle Scholar
6. Camras, M. D., Brown, J. M., Holonyak, N. Jr., Nixon, M. A., Kaliski, R. W., Ludowise, M. J., Dietze, W. T., and Lewis, C. R., J. Appl. Phys. 54, 6183 (1983).Google Scholar
7. Laidig, W. D., Caldwell, P. J., Lin, Y. F., and Peng, C. K., Appl. Phys. Lett. 44, 653 (1984).Google Scholar
8. Laidig, W. D., Lin, Y. F., and Caldwell, P. J., J. Appl. Phys. 56 (Dec. 1, 1984).10.1063/1.334187Google Scholar
9. Blakeslee, A. E., J. Electrochem. Soc. 118, 1459 (1971).Google Scholar
10. Osbourn, G. C., J. Vac. Sci. Technol. B 1, 379 (1983).CrossRefGoogle Scholar
11. Dingle, R., in Festkorper Probleme XV (Advances in Solid State Physics), Queissero, H. J., Ed. New York: Pergamon, 1975, pp. 2148.Google Scholar
12. Holonyak, N. Jr., Kolbas, R. M., Dupuis, R. D., and Dapkus, P. D., IEEE J. Quan. Electron QE- 16, 170 (1980).Google Scholar
13. Quillec, M., Goldstein, L., LeRoux, G., Burgeat, J., and Primot, J., J. Appl. Phys. 55, 2904 (1984).Google Scholar
14. Anderson, N. G., Laidig, W. D., and Lin, Y. F., J. Electron. Mater. (to be published, Mar. 1986).Google Scholar
15. Baliga, B. J., Bhat, R., and Ghandhi, S. K., J. Appl. Phys. 46, 4608 (1975).CrossRefGoogle Scholar
16. Chandrasekhar, M. and Pollak, F. H., Phys. Rev. B 15, 2127 (1977).Google Scholar
17. Higginbotham, C. W., Cardona, M., and Pollak, F. H., Phys. Rev., 184, 821 (1969).Google Scholar
18. Yu, P. Y., Cardona, M., and Pollak, F. H., Phys. Rev. B3, 340346 (1971).10.1103/PhysRevB.3.340Google Scholar
19. Pollak, F. H. and Cardona, M., Phys. Rev. 172, 816 (1968).Google Scholar
20. Paul, W., J. Appl. Phys. 32, 2082, (1961).10.1063/1.1777022Google Scholar
21. Olsen, G. H., Nuese, C. J., and Smith, R. T., J. Appl. Phys. 49, 5523 (1978).CrossRefGoogle Scholar
22. Asai, H. and Oe, K., J. Appl. Phys. 54, 2052 (1983).10.1063/1.332252Google Scholar
23. Fritz, I. J., Picraux, S. T., Dawson, L. R., and Allen, W. R., Materials Research Society Meeting, Paper D4.4 (Boston, Nov. 1984).Google Scholar
24. Extrapolated to 20K from values given by Gashimzada, F. M., Khartsiev, V. E., Fiz. Tv. Tela 3, 1453.Google Scholar
25. Extrapolated to 20K from values given by Gerlich, D., J. Appl. Phys. 34, 2915 (1963).Google Scholar
26. Pankove, J. I., Optical Processes In Semiconductors, New York: Dover, 1971, pp. 4124137.Google Scholar
27. Balslev, I., Solid State Commun. 5, 315 (1967).Google Scholar
28. Kowalozyk, S. P., Schaffer, W. J., Kraut, E. A., and Grant, R. W., J. Vac. Sci. Technol. 20, 705 (1982).CrossRefGoogle Scholar