No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Er3+, Nd3+ and Tm3+ doped Si/ZrO2 thin films have been prepared by rf co-sputtering. The films are 5 inches long and divided into 50 sections or positions, labeled from P1 to P50. The target configuration is such that the main target is ZrO2 (181.46 cm2), the rare earth (RE) oxide pellet (1.43 cm2) is placed on the main target below the middle of section of the film and the Si chip (6.67 cm2 or 6.00 cm2) is placed on the main target below one end of the film (P40 to P50). The films were annealed to 700°C. The Er3+4I13/2→4I15/2 emission was detected but no 4I13/2→4I15/2 emission was detected. The 4I13/2→4I15/2 emission shows a narrow peak at 1527 nm (FWHM = 6.5 nm for P20) with two weaker side bands from 1430 nm to 1500 nm and from 1550 nm to 1600 nm. The Nd3+4F3/2→4I9/2, 4F3/2→4I11/2, and 4F3/2→4I13/2 emissions were detected being the 4F3/2→4I11/2 peaked at 1065 nm (FWHM = 39.5 nm for P30) the strongest. The 4F3/2→4I9/2 emission is relatively weak, less than one-fourth the peak intensity of the 4F3/2→4I1/2 emission but is broad (FWHM = 92 nm for P30). No Er3+4I13/2→4I15/2 emission or Nd3+4F3/2 emissions were detected for the Si rich ends of the respective films, being the emission stronger from the Si poor end of the film towards the middle of the film. The maximum Er3+4I13/2→4I15/2 emission is for P20 and the maximum peak intensity for the Nd3+4F3/2→4I11/2 emission is for P30. The excitation wavelength dependence behavior for the Nd3+4F3/2→4I11/2 emission is that typical of energy transfer from the Si nanoparticles to the emitting Nd3+ ions. The excitation wavelength behavior for the Er3+4I13/2→4I13/2 emission reflects a mix of energy transfer from the Si nanoparticles and strong absorption for excitation wavelengths of 488.0 nm and 514.5 nm. The Tm3+ doped Si/ZrO2 thin film does not exhibit infrared (IR) PL from the 3H4 emission or the 3F4→3H6 emission. The intense band from 500 nm to 800 nm observed for all of the RE doped Si/ZrO2 films, due to defects in ZrO2, barely permits the detection of the Tm3+3H4→3H6 emission which is best observed for P35.