Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:31:40.477Z Has data issue: false hasContentIssue false

Luminescence of Cds Nanoparticles Doped and Activated With Foreign Ions

Published online by Cambridge University Press:  10 February 2011

J. M. Huang
Affiliation:
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, [email protected]
C. J. Murphy
Affiliation:
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, [email protected]
Get access

Abstract

Nanoparticles of CdS (5.0 nm diameter) are prepared in aqueous solution, and copper or silver ions are incorporated into the nanoparticle lattice (doped) or adsorbed to the nanoparticle surface (activated). The materials are characterized by ultraviolet-visible spectroscopy, photoluminescence spectroscopy, transmission electron microscopy and electron diffraction. The photoluminescence efficiency of the materials is affected by the concentration of the foreign ion. The effect of spatial location (doped vs. activated) on the spectral distribution of the emission are modest. Photodecomposition of copper-doped CdS is suppressed compared to CdS alone.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brus, L. E., J. Phys. Chem., 86, 2555 (1986).Google Scholar
2. Henglein, A., Pure Appl. Chem., 56, 1215 (1984).Google Scholar
3. Wang, Y., Herron, N., J. Phys. Chem., 95, 525(1991).Google Scholar
4. Bhargava, R. N., Gallagher, D., Hong, X., Nurmikko, A., Phys. Rev. Lett., 72, 416 (1994).Google Scholar
5. Sooklal, K., Cullum, B. S., Angel, S. M., Murphy, C. J., J. Phys. Chem. 100, 4551 (1996).Google Scholar
6. Isarov, A. V., Chrysochoos, J., Langmuir, 13, 3142 (1997).Google Scholar
7. Huang, J., Yang, Y., Xue, S., Yang, B., Liu, S. and Shen, J., Appl. Phys. Lett., 70, 2335 (1997).Google Scholar
8. Spanhel, L., Haase, M., Weller, H., Henglein, A., J. Am. Chem. Soc., 109, 5649 (1987).Google Scholar
9. Dannhauser, T., O'Neil, M., Johansson, K., McLendon, G., J. Phys. Chem., 90, 6074 (1986).Google Scholar
10. Hao, E., Sun, Y. P., Yang, B., Zhang, X., Liu, J. M., Shen, J. C., J. Colloid Interfac. Sci., 204, 369 (1998).Google Scholar
11. Alivisatos, A. P., Harris, A. L., Levinos, N. J., Steigerwald, M. L., Brus, L. E., J. Chem. Phys., 89, 4001 (1988).Google Scholar
12. Spanhel, L., Weller, H., Fojtik, A., Henglein, A., Ber. Bunsenges. Phys. Chem., 91, 88 (1987).Google Scholar
13. Curie, D., Prener, J. S., in Physics and Chemistry of JI-VI Compounds, edited by Aven, M., Prener, J. S. (North-Holland, Amsterdam, 1967), Chapter 9.Google Scholar
14. Mahtab, R., Rogers, J. P., Murphy, C. J., J. Am. Chem. Soc. 117, 9099 (1995).Google Scholar