Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:37:01.422Z Has data issue: false hasContentIssue false

Low-Temperature Solid-Phase Epitaxy of Defect-Free Aluminum p+-doped Silicon for Nanoscale Device Applications

Published online by Cambridge University Press:  01 February 2011

Yann Civale
Affiliation:
[email protected], Delft University of Technology, DIMES - Laboratory of ECTM, Feldmannweg 17, Delft, N/A, 2628 CT, Netherlands, +31 15 27 82185, +31 15 26 22613
Lis K. Nanver
Affiliation:
[email protected], Delft University of Technology, DIMES - Laboratory of ECTM, Feldmannweg 17, Delft, N/A, 2628 CT, Netherlands
Peter Hadley
Affiliation:
[email protected], Delft University of Technology, Kavli Institute of Nanoscience, Lorentzweg 1, Delft, N/A, 2628 CJ, Netherlands
Egbert J. G. Goudena
Affiliation:
[email protected], Delft University of Technology, DIMES - Laboratory of ECTM, Feldmannweg 17, Delft, N/A, 2628 CT, Netherlands
Henk W. van Zeijl
Affiliation:
[email protected], Delft University of Technology, DIMES - Laboratory of ECTM, Feldmannweg 17, Delft, N/A, 2628 CT, Netherlands
Hugo Schellevis
Affiliation:
[email protected], Delft University of Technology, DIMES - Laboratory of ECTM, Feldmannweg 17, Delft, N/A, 2628 CT, Netherlands
Get access

Abstract

A solid phase epitaxy (SPE) technique was developed to grow p+ aluminum-doped crystalline Si in a fully CMOS compatible process. This paper describes the experimental conditions leading to the selective growth of nanoscale single crystals where the location and dimensions are well controlled, even in the sub-100 nm range. The SPE Si crystals are defined by conventional lithography, show excellent electrical characteristics, and are uniform over the whole wafer. Fifty nanometer thick p+ SPE Si crystals were used to fabricate p+-n diodes and p+-n-p bipolar junction transistors. The high quality of the SPE Si and the remarkable control of the whole process, even in the sub-100 nm range, make this module directly usable for Si-based nanodevices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Zhang, Y. F., Tang, Y. H., Wang, N., Yu, D. P., Lee, C. S., Bello, I., Lee, S. T., Appl. Phys. Lett., 72, 15, 18351837, (1998).Google Scholar
2 Kamins, T. I., Li, X., Williams, R. Stanley, Nanolett., 4, 3, 503506, (2004).Google Scholar
3 Zheng, M. J., Zhang, L. D., Li, G. H., Shen, W. Z., Chem. Phys. Lett., 363, 1-2, 123128, (2002).Google Scholar
4 Westwater, J., Gosain, D. P., Isui, S., Phys. Stat. Sol. (a), 165, 1, 3742, (1998).Google Scholar
5 Wagner, R. S., Ellis, W. C., Appl. Phys. Lett., 4, 8990, (1964).Google Scholar
6 Givargizov, E. I., J. Crys. Growth, 31, 2030, (1975).Google Scholar
7 Bakkers, E. P. A. M., Dam, J. A. Van, Franceschi, S. De, Kouwenhoven, L. P., Kaiser, M., Verheijen, M., Wondergem, H. and Sluis, P. Van der, Nat. Mat., 3, 769773, (2004).Google Scholar
8 Jae-Ryoung, K., Oh, H., So, H. M., Kim, J. J., Kim, J., Lee, C. J, Lyu, S. C., Nanotech., 13, 701704, (2002).Google Scholar
9 Hanrath, T. and Korgel, B. A., NanoLett., 4, 14551461, (2004).Google Scholar
10 Hofmann, S., Ducati, C., Neill, R. J., Piscanec, S., Ferrari, A. C., Geng, J., Dunin-Borkowski, R. E., Robertson, J., J. Appl. Phys., 94, 9, (2003).Google Scholar
11 Dick, K. A., Deppert, K., Mårtensson, T., Mandl, B., Samuelson, L. and Seifert, W., NanoLett., 5, 4, 761764 (2005).Google Scholar
12 Sharma, S., Kamins, T. I., and Williams, R. S., J. Crys. Growth, 267, 613618, (2004).Google Scholar
13 Civale, Y., Nanver, L. K., Hadley, P., Goudena, E. J. G. and Schellevis, H., IEEE Electron Device Lett., 27, 5, 343345, (2006).Google Scholar
14 McCaldin, J. O. and Sankur, H., Appl. Phys. Lett., 19, 524527, (1971).Google Scholar
15 Trumbore, F. A., Bell Syst. Tech. J., 39, 1, 205, (1960).Google Scholar