Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T18:26:45.293Z Has data issue: false hasContentIssue false

Low-Temperature Pecvd Si3N4 Films for GaAs Encapsulation and Passivation.

Published online by Cambridge University Press:  21 February 2011

R. L. Pfeffer
Affiliation:
US Army ETDL, Fort Monmouth, NJ 07703
G. J. Gerardi
Affiliation:
US Army ETDL, Fort Monmouth, NJ 07703
R. A. Lux
Affiliation:
US Army ETDL, Fort Monmouth, NJ 07703
K. A. Jones
Affiliation:
US Army ETDL, Fort Monmouth, NJ 07703
E. H. Poindexter
Affiliation:
US Army ETDL, Fort Monmouth, NJ 07703
W. H. Chang
Affiliation:
US Army ETDL, Fort Monmouth, NJ 07703
R. A. B. Devine
Affiliation:
On leave from Centre National d'Etudes des Telecommunications, Meylan, France
Get access

Abstract

We have begun a detailed study of the physical properties of Si3 N4 films deposited at low temperatures using a PECVD process based on dilution of reactive gases with inert carrier gas [1] in order to investigate their feasibility for use as post-implant encapsulants and/or device passivation layers for GaAs. The films and substrates are analyzed by ion channeling, ellipsometry, IR spectrometry, ESR, RBS, and SEM to evaluate implantationinduced substrate and interface damage as well as the films’ optical properties, surface morphology, stoichiometry, uniformity, stress, and electrical trapping characteristics. Following furnace or RTA annealing they are recharacterized, adding SIMS to evaluate As diffusion into the films. Both Schottky and ohmic contacts are then formed and used to measure Hall mobility, trap density and 1/f noise. Preliminary results of these studies are presented and compared with those obtained using other techniques such as wafer-to-wafer As entrapment, arsine overpressure, or conventional CVD.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Batey, J. and Tierney, E., J. Appl. Phys. 60, 3136 (1986); J. Batey, E. Tierney, and T.N. Nguyen, IEEE Electron Dev. Lett. EDL-8, 148 (1987); D.A. Buchanan, J. Batey, and E. Tierney, IEEE Electron Dev. Lett. EDL-9, 576 (1988).Google Scholar
2. Kapoor, V. J. and Hankins, K. T., Eds., Proc. Symp. Dielectric Films on Compound Semiconductors (Electrochem. Soc. Extended Abstracts 87–2, 1987).Google Scholar
3. Mathad, G.S., Schwartz, G.C., and Smolinsky, G., Eds., Proc. 4th Symp on Plasma Processing (Electrochem. Soc. Dielectrics and Insulation and Electronics Div. Proc. 83–10, 1983).Google Scholar
4. Tay, S. P., Kalnitzky, A., and Ellul, J. P., in Science and Technology of Microfabrication, Howard, R. E., Hu, E. L., Namba, S., and Pang, S. W., Eds. (Mat. Res. Soc. Symp. Proc. 76, 1987) p. 235.Google Scholar
5. Chang, E.Y., Cibuzar, G.T., and Pande, K.P., IEEE Trans. Elec. Dev. ED–35, 1412 (1988); E.Y. Chang, G.T. Cibuzar, J.M. Vanhove, R.M. Nagarajan, and K.P. Pande, Appl. Phys. Lett. 53, 17 (1988).Google Scholar
6. Hashimoto, A., Kamijoh, T., Takano, H., and Sakuta, M., J. Electrochem. Soc. 134, 153 (1987).Google Scholar
7. Ohnishi, T., Onodera, T., and Yokoyama, N., IEEE Electron Dev. Lett. EDL–6, 172 (1985).Google Scholar
8. Tenedorio, J.G. and Terzian, P.A., IEEE Electron Dev. Lett. EDL–5, 199 (1984).Google Scholar
9. Valco, G.J. and Kapoor, V.J., J. Electrochem. Soc. 134, 685 (1987).Google Scholar
10. Wilson, M.R., Kosel, P.B., Shen, Y.D., and Welch, B.M., J. Electrochem. Soc. 134, 2560 (1987).Google Scholar
11. Hirao, T., Kamada, T., Kitagawa, M., Setsune, K., Wasa, K., Matsuda, A., and Tanaka, K., Japan. J. Appl. Phys. 27, 528 (1988).Google Scholar
12. Xie., J.Z. Murarka, S.P., Guo, X.S., and Lanford, W.A., J. Vac. Sci. Technol. B 7, 150 (1989).Google Scholar
13. Krick, D.T., Lenahan, P.M., and Kanicki, J., Appl. Phys. Lett. 51, 608 (1987); D.T. Krick, P.M. Lenahan, and J. Kanicki, J. Appl. Phys. 64, 3558 (1988).Google Scholar
14. Doolittle, L.R., Nuc. Inst. Meth. Phys. Res. B9, 344 (1985).Google Scholar