Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T21:28:50.943Z Has data issue: false hasContentIssue false

Low-temperature operation of diamond surface-channel field-effect transistors

Published online by Cambridge University Press:  01 February 2011

Minoru Tachiki
Affiliation:
School of Science & Engineering, Waseda University, Tokyo, Japan. CREST, Japan Science and Technology Corporation (JST), Japan. E-mail: [email protected]
Hiroaki Ishizaka
Affiliation:
School of Science & Engineering, Waseda University, Tokyo, Japan. CREST, Japan Science and Technology Corporation (JST), Japan. E-mail: [email protected]
Tokishige Banno
Affiliation:
School of Science & Engineering, Waseda University, Tokyo, Japan. CREST, Japan Science and Technology Corporation (JST), Japan. E-mail: [email protected]
Toshikatsu Sakai
Affiliation:
School of Science & Engineering, Waseda University, Tokyo, Japan. CREST, Japan Science and Technology Corporation (JST), Japan. E-mail: [email protected]
Kwang-Soup Song
Affiliation:
School of Science & Engineering, Waseda University, Tokyo, Japan. CREST, Japan Science and Technology Corporation (JST), Japan. E-mail: [email protected]
Hitoshi Umezawa
Affiliation:
School of Science & Engineering, Waseda University, Tokyo, Japan. CREST, Japan Science and Technology Corporation (JST), Japan. E-mail: [email protected]
Hiroshi Kawarada
Affiliation:
School of Science & Engineering, Waseda University, Tokyo, Japan. CREST, Japan Science and Technology Corporation (JST), Japan. E-mail: [email protected]
Get access

Abstract

Cryogenic operation of the diamond surface-channel field-effect transistors (FETs) is investigated. Metal-insulator-semiconductor FETs (MISFETs) are fabricated using CaF2 as a gate insulator. MISFETs operate successfully even at 4.4 K. At low temperature, field-effect enhances the drain current, even if the surface holes become almost frozen-out. Channel mobility increases as temperature decreases to 4.4 K, which indicates the reduced phonon scattering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kawarada, H., Surf. Sci. Rep. 26, 205 (1996)Google Scholar
2. Umezawa, H., Tsugawa, K., Yamanaka, S., Takeuchi, D., Okushi, H. and Kawarada, H., Jpn. J. Appl. Phys. 38, L1222 (1999).Google Scholar
3. Umezawa, H., Taniuchi, H., Arima, T., Tachiki, M., Tsugawa, K., Yamanaka, S., Takeuchi, D., Okushi, H. and Kawarada, H., Jpn. J. Appl. Phys. 39, L908 (2000).Google Scholar
4. Ishizaka, H., Umezawa, H., Taniuchi, H., Arima, T., Fujihara, N., Tachiki, M. and Kawarada, H., Diamond & Relat. Mater. (in press).Google Scholar
5. Yun, Y., Maki, T., Tanaka, H. and Kobayashi, T., J. Appl. Phys. 82, 3422 (1997)Google Scholar
6. Sauerer, C., Ertl, F., Nebel, C. E., Stutzmann, M., Bergonzo, P., Williams, O. A. and Jackman, R. A., Phys. Stat. Sol. 186, 241 (2001)Google Scholar
7. Nebel, C. E., Sauerer, C., Ertl, F., Stutzmann, M., Graeff, C. F. O., Bergonzo, P., Williams, O. A. and Jackman, R. A., Appl. Phys. Lett. 79, 4541 (2001)Google Scholar
8. Nishioka, T., Kobayashi, T. and Furukawa, Y., IEEE Trans. ED-29, 1507 (1982)Google Scholar
9. Schön, J. H., Berg, S., Kloc, Ch. and Batlogg, B., Science, 287, 1022 (2000)Google Scholar
10. Schön, J. H., Kloc, Ch. and Batlogg, B., Nature, 408, 549 (2000)Google Scholar
11. Schön, J. H., Dorget, M., Beuran, F. C., Xu, X. Z., Arushanov, E., Laguës, M. and Cavellin, C. Deville, Science, 293, 2430 (2001)Google Scholar