Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T19:05:10.510Z Has data issue: false hasContentIssue false

Low-Temperature Growth and Structural Characterization of GaAs Using Ionized Source Beam Epitaxy

Published online by Cambridge University Press:  21 February 2011

D.-W. Roh
Affiliation:
Electronics and Telecommunications Research Institute, Taejon, Korea
K. Kim
Affiliation:
ECE Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Get access

Abstract

Single-crystal GaAs films were grown on SI (100) GaAs at substrate temperatures below 200 °C by using ionized source beam epitaxy. The correlation between the properties of the films and the growth parameters, in particular, the substrate temperature, the amount of As-source beam ionization, and the acceleration voltage of the As beam was investigated to elucidate the possible benefits of source beam ionization and acceleration on low-temperature thin film growth. The use of ionized and accelerated As-source beam greatly improved the quality of the low-temperature grown GaAs film. The surface morphology, crystallinity, and micro structure of the low temperature grown GaAs films were evaluated using in situ reflection high energy electron diffraction, double crystal X-ray diffraction, and cross section transmission electron microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Smith, F. in Low Temperature (LT) GaAs and Related Materials, edited by Witt, G. L., Calawa, R., Mishra, U., and Weber, E. (Mater. Res. Soc. Symp. Proc. 241, Pittsburgh, PA 1992), p.312 and references therein.Google Scholar
2 Eaglesham, D., Pfeiffer, L., West, K., and Dykaar, D., Appl. Phys. Lett. 58, 65 (1991).Google Scholar
3 Tadayon, B., Tadayon, S., Zhu, J., Spencer, M., Harris, G., Griffin, J., and Eastman, L., J. Vac. Sci. Technol. B8, 131 (1990).Google Scholar
4 Yun, S. J., Kim, K., and Yoo, M. C., Appl. Surf. Sci. 70/71, 536 (1993).Google Scholar
5 Yun, S. J., Yoo, M. C., and Kim, K., J. Appl. Phys. 74, 2866 (1993).Google Scholar
6 Kim, K., Sung, M. Y., Hsich, K. C., Cowell, E. W., Feng, M. S., and Cheng, K. Y., J. Vac. Sci. Technol. A7 (1989) 792.Google Scholar
7 Kaminska, M., Liliental-Weber, Z., Weber, E. R., George, T., Kortright, J. B., Smith, F. W., Tsaur, B. -Y., and Calawa, A. R., Appl. Phys. Lett. 54, 1881 (1989).Google Scholar
8 Yoo, M. C., Yun, S. J., Kim, K., and Rigsbee, J. M., J. Vac. Sci. Technol. B11, 1942 (1993).Google Scholar
9 Pirouz, P., Ernst, F., and cheng, T. T. in Heteroepitaxy on Silicon: Fundamentals. Structures. and Devices, edited by Choi, H. K., Ishiwara, H., Hull, R., and Nemanich, R. J. (Mater. Res. Soc. Symp. Proc. 116, Pittsburgh, PA 1988), p. 57.Google Scholar