Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T16:16:48.692Z Has data issue: false hasContentIssue false

Low-Temperature Chemical-Vapor Deposition of Amorphous Semiconductors and Insulators

Published online by Cambridge University Press:  01 January 1993

Masakiyo Matsumura
Affiliation:
Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152, Japan
Osamu Sugiura
Affiliation:
Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152, Japan
Get access

Abstract

We have developed a low-temperature (plasma-free) thermal-CVD method for the purpose of eliminating the plasma-CVD method on the amorphous-silicon thin-film transistor (a-Si TFT) process. The motivation comes from the fact that, in the plasma-CVD method, there arc many shortcomings originating from inherent properties of plasma, and that only the CVD method has potentially no drawbacks among various alternative methods. High deposition temperature, the most serious technological barrier in the present a-Si and silicon- nitridc (SiN) CVD methods, has been overcome by the use of high silicon-hydridcs and high nitrogen-hydrides for source gases. Electronic properties of the CVD-produced a-Si film arc improved by post-hydrogenation. Excimer-laser annealing is the next generation technology for improving dramatically the electronic properties of the CVD-produced Si and SiN films. This paper reviews these novel technologies developed in our group aiming at the TFT process, and also the CVD-produced TFT characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Matsumura, M. and Uchida, Y., J. de Physique, 42, C4-671 (1981).Google Scholar
[2] Kaplan, D., in The Physics of Hydrogenated Amorphous Silicon I, edited by Joannopoulos, J.D. and Lucovsky, G. (Springer-Verlag, Berlin, 1984) p.177202.Google Scholar
[3] Hirosc, M., J. Physique, 42, C4-705 (1981).Google Scholar
[4] Aktar, M., Dalarm, V.L., Ramaprasad, K.R., Gau, S. and Cambridge, J.A., Appl. Phys. Lett., 41, 1146 (1982).Google Scholar
[5] Gau, S.C., Weinberger, B.R., Aktar, M., Kiss, Z. and Macdiarmid, A.G., Appl. Phys. Lett., 39, 436 (1981).Google Scholar
[6] Chu, T.L., Chu, S.S., Ang, S.T., Duong, A., Han, Y.X. and Liu, Y.H., J. Appl. Phys., 60 ,4268 (1986).Google Scholar
[7] Kanoh, H., Sugiura, O. and Matsumura, M., to be published in Jpn. J. Appl. Phys., (1993).Google Scholar
[8] Breddels, P.A., Kanoh, H., Sugiura, O. and Matsumura, M., Electron. Lett., 25, 1637 (1989).Google Scholar
[9] Spear, W.E. and Lecomber, P.G., Electron. Lett., 15, 179 (1979).Google Scholar
[10] Yoshioka, S. and Takayanagi, S., J. Electrochem. Soc., 114 962 (1967).Google Scholar
[11] Ishihara, R., Kanoh, H., Sugiura, O. and Matsumura, M., Jpn. J. Appl. Phys., 31 , L74 (1992).Google Scholar
[12] Kanoh, H., Sugiura, O., Breddels, P.A. and Matsumura, M., Jpn. J. Appl. Phys., 29, 2358 (1990).Google Scholar
[13] Pankove, J.L., Lampert, M.A. and Tam, M., Appl. Phys. Lett., 32, 439 (1978).Google Scholar
[14] Nakamura, M., Ohno, T., Miyata, K., Konishi, N. and Suzuki, T., J. Appl. Phys., 65, 3061(1989).Google Scholar
[15] Uchida, Y., Kanoh, H., Sugiura, O. and Matsumura, M., Jpn. J. Appl. Phys., 29, L2171 (1990).Google Scholar
[16] Sugiura, O., Shiroiwa, T., Kanoh, H. and Matsumura, M., to be published in Jpn. J. Appl. Phys., (1993).Google Scholar
[17] Shiroiwa, T., Sugiura, O., Kanoh, H., Asai, N., Usami, K., Hattori, T. and Matsumura, M., Jpn. J. Appl. Phys., 32, L20 (1993).Google Scholar
[18] Satoh, T., Kanoh, H., Sugiura, O. and Matsumura, M., Jpn. J. Appl. Phys., 30, L2077 (1991).Google Scholar
[19] Ahn, B.C., Usami, K., Kanoh, H., Sugiura, O. and Matsumura, M., Trans. IECE of Japan, J76–C–II, to be published in May issue (1993).Google Scholar
[20] Breddels, P.A., Kanoh, H., Sugiura, O. and Matsumura, M., Jpn. J. Appl. Phys., 30, 233 (1991).Google Scholar
[21] Kanoh, H., Sugiura, O., Breddels, P.A. and Matsumura, M., IEEE Electron Devices Lett., 11, 258 (1990).Google Scholar
[22] Kanoh, H., Sugiura, O., Fujioka, S., Aramaki, Y., Hattori, T. and Matsumura, M., J. de Physique IV, 1, C2-839 (1991).Google Scholar
[23] Ishihara, R., Kanoh, H., Uchida, Y., Sugiura, O. and Matsumura, M., to be published in Mater. Res. Soc. Proc. (1993).Google Scholar
[24] Ahn, B.C., Kanoh, H., Sugiura, O. and Matsumura, M., Conf. Record of the 1991 Int'&l Display Res. Conf., 85 (1991).Google Scholar
[25] Shimizu, K-, Sugiura, O. and Matsumura, M., Jpn. J. Appl. Phys., 29, L1775 (1990).Google Scholar
[26] Shimizu, K., Sugiura, O. and Matsumura, M., IEEE Trans. Electron Devices, 40, 112 (1993).Google Scholar
[27] Shimizu, K., Nakamura, K., Higashimoto, M., Sugiura, O. and Matsumura, M., Jpn. J. Appl. Phys., 32, 452 (1992).Google Scholar
[28] Kim, C.D., Sugiura, O. and Matsumura, M., this MRS Symposium Proc., (1993).Google Scholar
[29] Shimizu, K., Sugiura, O. and Matsumura, M., Technical Digest of the 1992 Int’l Electron Devices Meeting, 669 (1992).Google Scholar