Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:14:50.676Z Has data issue: false hasContentIssue false

Low-power and Fast-switching Organic Field-effect Transistors with Ionic Liquids

Published online by Cambridge University Press:  01 February 2011

S. Ono
Affiliation:
[email protected], CRIEPI, Materials Science Research Laboratory, Komae, Tokyo, 201-8511, Japan
S. Seki
Affiliation:
[email protected], CRIEPI, Materials Science Research Laboratory, Komae, Tokyo, 201-8511, Japan
R. Hirahara
Affiliation:
[email protected], Osaka University, Graduate Schools of Science, Machikaneyama, Toyonaka, 560-0043, Japan
Y. Tominari
Affiliation:
[email protected], Osaka University, Graduate Schools of Science, Machikaneyama, Toyonaka, 560-0043, Japan
J. Takeya
Affiliation:
[email protected], Osaka University, Graduate School of Science, 1-1, Machikaneyama, Toyonaka, 560-0043, Japan
Get access

Abstract

We report high-mobility rubrene single-crystal field-effect transistors with ionic-liquid electrolytes used for gate dielectric layers. As the result of fast ionic diffusion to form electric double layers, their capacitances remain more than 10 μF/cm2 even at 0.1 MHz. With high carrier mobility of 1.2 cm2/Vs in the rubrene crystal, pronounced current amplification is achieved at the gate voltage of only 0.2 V, which is two orders of magnitude smaller than that necessary for organic thin-film transistors with dielectric gate insulators. The results demonstrate that the ionic-liquid/organic semiconductor interfaces are suited to realize low-power and fast-switching field-effect transistors without sacrificing carrier mobility in forming the solid/liquid interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Malliaras, G. and Friend, R., Phys. Today. 58, 53 (2005).Google Scholar
2. Podzorov, V., Pudalov, V. M., and Gershenson, M. E., Appl. Phys. Lett. 82, 1739 (2003).Google Scholar
3. Takeya, J., Goldmann, C., Haas, S., Pernstich, K. P., Ketterer, B., and Batlogg, B., J. Appl. Phys. 94, 5800 (2003).Google Scholar
4. Boer, R. W. I. de, Klapwijk, T. M., and Morpurgo, A. F., Appl. Phys. Lett. 83, 4345 (2003).Google Scholar
5. Sundar, V. C., Zaumseil, J., Podzorov, V., Menard, E., Willett, R. L., Someya, T., Gershenson, M. E., and Rogers, J. A., Science 303, 1644 (2004).Google Scholar
6. Takeya, J., Kato, J., Hara, K., Yamagishi, M., Hirahara, R., Yamada, K., Nakazawa, Y., Ikehata, S., Tsukagoshi, K., Aoyagi, Y., Takenobu, T., and Iwasa, Y., Phys. Rev. Lett. 98, 196804 (2007).Google Scholar
7. Reese, C., Chung, W.-J., Ling, M.-M., Roberts, M., and Bao, Z., Appl. Phys. Lett. 89, 202108 (2006).Google Scholar
8. Uno, M., Tominari, Y., and Takeya, J., submitted.Google Scholar
9. Takeya, J., Tsukagoshi, K., Aoyagi, Y, Takenobu, T., and Iwasa, Y., Jpn. J. Appl. Phys. 44, L1393 (2005).Google Scholar
10. Podzorov, V., Menard, E., Rogers, J. A., and Gershenson, M. E., Phys. Rev. Lett. 95, 226601 (2005).Google Scholar
11. Kraitchman, J., J. Appl. Phys. 38, 4323 (1967).Google Scholar
12. Halik, M., Klauk, H., Zschieschang, U., Schmid, G., Dehm, C., Schütz, M., Maisch, S., Effenberger, F., Brunnbauer, M., and Stellacci, F., Nature 431, 963 (2004).Google Scholar
13. Panzer, M. J., Newman, C. R., and Frisbie, C. D., Appl. Phys. Lett. 86, 103503 (2005).Google Scholar
14. Panzer, M. J. and Frisbie, C. D., Appl. Phys. Lett. 88, 203504 (2006).Google Scholar
15. Takeya, J., Yamada, K., Hara, K., Shigeto, K., Tsukagoshi, K., Ikehata, S., and Aoyagi, Y., Appl. Phys. Lett. 88, 112102 (2006).Google Scholar
16. Said, E., Crispin, X., Herlogsson, L., Elhag, S., Robinson, N. D., and Berggren, M., Appl. Phys. Lett. 89, 143507 (2006).Google Scholar
17. Shimotani, H., Asanuma, H., Takeya, J., and Iwasa, Y., Appl. Phys. Lett. 89, 203501 (2006).Google Scholar
18. Panzer, M. J. and Frisbie, C. D., J. Am. Chem. Soc. 129, 6599 (2007).Google Scholar
19. Lee, J., Panzer, M. J., He, Y., Lodge, T. P., and Frisbie, C. D., J. Am. Chem. Soc. 129, 4532 (2007).Google Scholar
20. Susan, M. A. B. H., Kaneko, T., Noda, A., and Watanabe, M., J. Am. Chem. Soc. 127, 4976 (2005).Google Scholar
21. Seki, S., Kobayashi, Y., Miyashiro, H., Ohno, Y., Usami, A., Mita, Y., Kihira, N., Watanabe, M., and Terada, N., J. Phys. Chem. B 110, 10228 (2006).Google Scholar
22. Seki, S., Ohno, Y., Kobayashi, Y., Miyashiro, H., Usami, A., Mita, Y., Tokuda, H., Watanabe, M., Hayamizu, K., Tsuzuki, S., Hattori, M., and Terada, N., Electrochem, J., Soc. 154, A173 (2007).Google Scholar
23. Misra, R., McCarthy, M., and Hebard, A. F., Appl. Phys. Lett. 90, 052905 (2007).Google Scholar
24. Klauk, H., Halik, M., Zschieschang, U., Schmid, G., Radlik, W., and Weber, W., J. Appl. Phys. 92, 5259 (2002).Google Scholar
25. Stassen, A. F., de, R. W. I. Boer, Iosad, N. N., and Morpurgo, A. F., Appl. Phys. Lett. 85, 3899 (2004).Google Scholar
26. Hulea, I. N., Fratini, S., Xie, H., Mulder, C. L., Iossad, N. N., Rastelli, G., Ciuchi, S., and Morpurgo, A. F., Nature Mat. 5, 982 (2006).Google Scholar