Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:31:05.874Z Has data issue: false hasContentIssue false

Low-loss Polymer Optical Waveguides with High Thermal Stability

Published online by Cambridge University Press:  15 March 2011

Jae-Wook Kang
Affiliation:
K-JIST, Dept of Material Sciences and Engineering, Kwangju, Korea
Jae-Pil Kim
Affiliation:
K-JIST, Dept of Material Sciences and Engineering, Kwangju, Korea
Won-Young Lee
Affiliation:
K-JIST, Dept of Material Sciences and Engineering, Kwangju, Korea
Joon-Sung Kim
Affiliation:
K-JIST, Dept of Material Sciences and Engineering, Kwangju, Korea
Jae-Suk Lee
Affiliation:
K-JIST, Dept of Material Sciences and Engineering, Kwangju, Korea
Jang-Joo Kim
Affiliation:
K-JIST, Dept of Material Sciences and Engineering, Kwangju, Korea
Get access

Abstract

We synthesized novel cross-linkable fluorinated copoly(arylene ether sulfide)s for optical waveguide applications, which have high thermal stability, high optical transparency in the infrared communication region, and much smaller birefringence than other thermally stable fluorinated polyimides. The refractive index of the material can be easily controlled from 1.515 to 1.587 by changing the copolymer composition in the materials. The birefringence of the cured polymers were 0.0031∼0.0039 at the wavelength of 1.55 μm. This is much lower than those of fluorinated polyimides for optical waveguides. The refractive index of fluorinated poly(arylene ether sulfide) (FPAESI) after being stored at 100 °C for 1000 hr remains almost constant demonstrating the thermal stability. The propagation loss of the channel waveguides fabricated using reactive ion etching was less than 0.4 dB/cm at the wavelength of 1.55 μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Booth, B. L., J. Lightwave Technol. 7, 1445 (1989).Google Scholar
2. Eldada, L., and Shacklette, L. W., IEEE J. Selected Topics in Quantum Electronics 6, 54 (2000).Google Scholar
3. Kane, C. F., and Krchnavek, R. R., IEEE Photon. Technol. Lett. 7, 535 (1995).Google Scholar
4. Fischbeck, G., Moosburger, R., Topper, M., and Petermann, K., Electron. Lett. 32, 212 (1996).Google Scholar
5. Fischbeck, G., Moosburger, R., Kostrzewa, C., Achen, A., and Petermann, K., Electron. Lett. 33, 518 (1997).Google Scholar
6. Singer, K. D., Kowalczyk, T. C., Nguyen, H. D., Beuhler, A. J., and Wargowski, D. A., Proc. SPIE, CR68, 399 (1998).Google Scholar
7. Kobayashi, J., Matsuura, T., Hida, Y., Sasaki, S., and Maruno, T., J. Lightwave Technol. 16, 1024 (1998).Google Scholar
8. Han, K. S., Kim, D.-B., Jang, W.-H., and Rhee, T. H., Jpn. J. Appl. Phys. 38, L1249 (1999).Google Scholar
9. Yoshimura, R., Hikita, M., Tomaru, S., and Imamura, S., J. Lightwave Technol. 16, 1030 (1998).Google Scholar
10. Usui, M., Hikita, M., Watanabe, T., Amano, M., Sufawara, S., Hayashida, S., and Imamura, S., J. Lightwave Technol. 14, 2338 (1996).Google Scholar
11. Kang, J.-W., Kim, J.-S., and Kim, J.-J., Jpn. J. Appl. Phys. 40, 3215 (2001).Google Scholar
12. Oh, M. C., Lee, H. J., Lee, M. H., Ahn, J. H., Han, S. G., Appl. Phys. Lett. 72, 1559 (1998).Google Scholar
13. Kang, J.-W., Kim, J.-P., Lee, W.-Y., Kim, J.-S., Lee, J.-S., and Kim, J.-J., J. Lightwave Technol. 19, 872 (2001)Google Scholar
14. Kim, J.-P., Lee, W.-Y., Kang, J.-W., Kwon, S.-K., Kim, J.-J., and Lee, J.-S., Macromolecules 34, 7817 (2001).Google Scholar