Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T07:49:46.784Z Has data issue: false hasContentIssue false

Low-Frequency Noise in “Graphene-Like” Exfoliated Thin Films of Topological Insulators

Published online by Cambridge University Press:  30 August 2011

M. Z. Hossain
Affiliation:
Nano-Device Laboratory, Department of Electrical Engineering and Materials Science and Engineering Program, University of California, Riverside, California 92521 USA
S. L. Rumyantsev
Affiliation:
Department of Electrical, Computer and Systems Engineering and Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 USA Ioffe Institute, Russian Academy of Sciences, St. Petersburg, 194021 Russia
K. M. F. Shahil
Affiliation:
Nano-Device Laboratory, Department of Electrical Engineering and Materials Science and Engineering Program, University of California, Riverside, California 92521 USA
D. Teweldebrhan
Affiliation:
Nano-Device Laboratory, Department of Electrical Engineering and Materials Science and Engineering Program, University of California, Riverside, California 92521 USA
M. Shur
Affiliation:
Department of Electrical, Computer and Systems Engineering and Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 USA
A. A. Balandin*
Affiliation:
Nano-Device Laboratory, Department of Electrical Engineering and Materials Science and Engineering Program, University of California, Riverside, California 92521 USA
*
*Corresponding author: [email protected]
Get access

Abstract

We report results of the study of the low-frequency noise in thin films of bismuth selenide topological insulators, which were mechanically exfoliated from bulk crystals via “graphene-like” procedures. From the resistance dependence on the film thickness, it was established that the surface conduction contributions to electron transport were dominant. It was found that the current fluctuations have the noise spectral density SI ∞ 1/f (where f is the frequency) for the frequency range up to 10 kHz. The obtained noise data are important for transport experiments with topological insulators and for any proposed device applications of these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bernevig, A. B., Huges, T. L., and Zhang, S. C., Science 314 (2006).Google Scholar
[2] Konig, M., Wiedmann, S., Brune, C., Roth, A., Buhmann, H., Molenkamp, L. W., Qi, X. L., and Zhang, S. C., Science 318 (2007).Google Scholar
[3] Fu, L., and Kane, C. L., Phys. Rev. B 76, 045302 (2007).Google Scholar
[4] Zhang, H., Liu, C. X., Qi, X. L., Dai, X., Fang, Z., and Zhang, S. C., Nat. Phys. 5 (2009).Google Scholar
[5] Hsieh, D., Qian, D., Wray, L., Xia, Y., Hor, Y. S., Cava, R. J., Hasan, M. Z., Nature 452 (2008).Google Scholar
[6] Hsieh, D., Xia, Y., Wray, L., Qian, D., Pal, A., Dil, J. H., Osterwalder, J., Meier, F., Kane, C. L., and Bihlmayer, G., Science 323 (2009).Google Scholar
[7] Teweldebrhan, D., Goyal, V., and Balandin, A. A., Nano Lett. 10 (2010)Google Scholar
[8] Zahid, F., and Lake, R., Appl. Phys. Lett. 97, 212102 (2010).Google Scholar
[9] Balandin, A. A., “Noise and Fluctuations Control in Electronic Devices,” ASP (2002).Google Scholar
[10] Wyckoff, R. W. G, “Crystal Structures,” (Krieger, Melbourne, FL, Vol. 2, 1986).Google Scholar
[11] Teweldebrhan, D., Goyal, V., Rahman, M., and Balandin, A. A., Appl. Phys. Lett. 96, 053107 (2010).Google Scholar
[12] Shahil, K. M. F., Hossain, M. Z., Teweldebrhan, D., and Balandin, A. A., Appl. Phys. Lett. 96, 153103 (2010).Google Scholar
[13] Steinberg, H., Gardner, D. R., Lee, Y. S., and Herrero, P. J., Nano Lett. 10 (2010).Google Scholar
[14] Hossain, M. Z., Rumyantsev, S. L., Teweldebrhan, D., Shahil, K. M. F., Shur, M. and Balandin, A. A., Physica Status Solidi (A) 1 (2011).Google Scholar
[15] Hossain, M. Z., Rumyantsev, S. L., Teweldebrhan, D., Shahil, K. M. F., Shur, M. and Balandin, A. A., ACS Nano, DOI: 10.1021/nn102861d.Google Scholar
[16] Collins, P. G., Fuhrer, M. S., and Zettl, A., Appl. Phys. Lett. 76 (2000).Google Scholar
[17] Hooge, F. N., and Vandamme, L. K. J., Phys. Lett. A 66 (1978).Google Scholar
[18] Rice, A. K., Malloy, K. J., and Bulk, K. J., J. Appl. Phys. 87 (2000).Google Scholar