Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T02:51:03.887Z Has data issue: false hasContentIssue false

Low-energy ion induced sputtering of pre-patterned fused silica surfaces

Published online by Cambridge University Press:  31 January 2011

Jens Völlner
Affiliation:
[email protected], Leibniz-Institut für Oberflächenmodifizierung, Leipzig, Germany
Bashkim Ziberi
Affiliation:
[email protected], Leibniz-Institut für Oberflächenmodifizierung, Leipzig, Germany
Frank Frost
Affiliation:
[email protected], Leibniz-Institut für Oberflächenmodifizierung, Leipzig, Germany
Bernd Rauschenbach
Affiliation:
[email protected], Leibniz-Institut für Oberflächenmodifizierung, Leipzig, Germany
Get access

Abstract

Ripple formation and smoothing of pre-patterned fused silica surfaces by low-energy ion beam erosion have been investigated. As pre-pattern ripple surfaces produced by low-energy Ar+ ion beam erosion were used. In addition to the enhanced ripple formation on the pre-patterned surfaces also the smoothing characteristics of surface is changed. Due to the anisotropic surface roughness of the ripple pattern the irradiation direction with respect to the pre-pattern becomes important. It is suggested that all of these effects are related to surface gradient dependent sputtering and therefore it is an important mechanisms also in the low-energy ion beam erosion of fused silica surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Navez, M. Stella, C. Chaperot, D. Acad, C. R.. Sci. Paris 254, 240 (1962)Google Scholar
2 Carter, G. J. Phys. D: Appl. Phys. 34, p 1 (2001)Google Scholar
3 Valbusa, U. et al. , J. Phys.: Condens. Matter 14, 1853 (2002)Google Scholar
4 Chan, W. L. Chason, E. J. Appl. Phys. 101, 121301 (2007)Google Scholar
5 Flamm, D. Frost, F. Hirsch, D. Appl. Surf. Sci. 179, 96 (2001)Google Scholar
6 Toma, A. et al. , Nucl. Instrum. Methods B 230, 551 (2005)Google Scholar
7 Bradley, R. M. Harper, J. M. E. J. Vac. Sci. Technol. A 6, 2390 (1988)Google Scholar
8 Karmakar, P. et al. , Appl. Phys. Lett. 93, 103102 (2008)Google Scholar
9 Toma, A. et al. , J. Appl. Phys. 104, 104313 (2008)Google Scholar
10 Motohiro, T. Taga, T. Thin Solid Films 147, 153 (1987)Google Scholar
11 Lewis, G. W. et al. , Nucl. Instrum. Methods 170, 363 (1980)Google Scholar
12 Carter, G. Collignon, J. S. Nobes, M. J. J. Mater. Sci. 8, 1473 (1973)Google Scholar
13 Völlner, J., Ziberi, B. Frost, F. Rauschenbach, B. to be publishedGoogle Scholar