Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T23:22:07.640Z Has data issue: false hasContentIssue false

Low Threshold Field Emission from Amorphous Carbon Films Grown by Electrochemical Deposition

Published online by Cambridge University Press:  01 February 2011

Hideo Kiyota
Affiliation:
[email protected], Kyushu Tokai University, Electrical and Electronic Systems, 9-1-1 Toroku, Kumamoto, 862-8652, Japan, +81-96-386-2654, +81-96-386-2754
Mikiteru Higashi
Affiliation:
[email protected], Tokai University, Department of Electronics, 1117 Kitakaname, Hiratsuka, Kanagawa, 259-1207, Japan
Tateki Kurosu
Affiliation:
[email protected], Tokai University, Department of Electronics, 1117 Kitakaname, Hiratsuka, Kanagawa, 259-1207, Japan
Masamori Iida
Affiliation:
[email protected], Tokai University Junior College, Department of Information and Network, 2-3-23 Takanawa, Minato-ku, Tokyo, 108-8649, Japan
Get access

Abstract

Electrochemical deposition of amorphous carbon (a-C) film is performed by applying a direct-current potential to substrates immersed in methanol. Both scanning electron microscopy and Raman results indicate that smooth and homogeneous a-C films are grown on specific substrate materials such as Si, Ti, and Al. Field emission measurements demonstrate excellent emission properties such as threshold fields lower than 5 V/μm. Field enhancement factors are estimated to be 1300–1500; these are attributed to local field enhancements around sp2 carbon clusters that are embedded in the a-C films. Emission properties of a-C films grown on Si exhibit a current saturation under higher applied fields. These saturation behaviors are explained by an effect of a potential barrier formed at the interface between a-C films and substrates. Since the interface barrier is reduced by formation of the Ti interfacial layer, an approach to use carbide formation at the interface is verified as useful to improve the emission properties of a-C films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Geis, M. W., Efremow, N. N., Woodhouse, J. D., MacAleese, M. D., Marchywka, M., Socker, D. G., and Hochedez, J. F., IEEE Electron Dev. Lett. 12, 456 (1991).Google Scholar
2. Xu, N. S., Latham, R. V., and Tzeng, Y., Electron. Lett. 29, 1956 (1993).Google Scholar
3. Sugino, T., Iwasaki, Y., Kawasaki, S., Hattori, R., and Shirafuji, J., Diamond Relat. Mater. 6, 889 (1997).Google Scholar
4. Amaratunga, G. A. J. and Silva, S. R. P., Appl. Phys. Lett. 68, 2529 (1996).Google Scholar
5. Missert, N., Friedmann, T. A., Sullivan, J. P., and Copeland, R. G., Appl. Phys. Lett. 70, 1995 (1997).Google Scholar
6. Satyanarayana, B. S., Hart, A., Milne, W. I., and Robertson, J., Appl. Phys. Lett. 71, 1430 (1997).Google Scholar
7. Kiyota, H., Araki, H., Kobayashi, H., Shiga, T., Kitaguchi, K., Iida, M., Wang, H., Miyo, T., Takida, T., Kurosu, T., Inoue, K., Saito, I., Nishitani-Gamo, M., Sakaguchi, I., and Ando, T., Appl. Phys. Lett. 75, 2331 (1999).Google Scholar
8. Namba, Y., J. Vac. Sci. Technol. A 10, 3368 (1992).Google Scholar
9. Wang, H., Shen, M. R., Ning, Z. Y., Ye, C., Cao, C. B., Dang, H. Y., and Zhu, H. S., Appl. Phys. Lett. 69, 1074 (1996).Google Scholar
10. Roy, R. K., Deb, B., Bhattacharjee, B., and Pal, A. K., Thin Solid Films 422, 92 (2002).Google Scholar
11. Voevodin, A. A., Laube, S. J. P., Walck, S. D., Solomon, J. S., Donley, M. S., and Zabinski, J. S., J. Appl. Phys. 78, 4123 (1995).Google Scholar
12. Chhowalla, M., Ferrari, A. C., Robertson, J., and Amaratunga, G. A. J., Appl. Phys. Lett. 76, 1416 (2000) 1419.Google Scholar
13. Ferrari, A. C. and Robertson, J., Phys. Rev. B 61, 14095 (2000).Google Scholar
14. Brodie, I. and Schwoebel, P. R., Proc. IEEE, 82, 1006 (1994).Google Scholar
15. Ristein, J., Schäfer, J., and Ley, L., Diamond Relat. Mater. 4, 508 (1995).Google Scholar
16. Chhowalla, M., Ducati, C., Rupesinghe, N. L., Teo, K. B. K., and Amaratunga, G. A. J., Appl. Phys. Lett. 79, 2079 (2001).Google Scholar
17. Tachibana, T., Williams, B. E., and Glass, J. T., Phys. Rev. B 45, 11975 (1992).Google Scholar