Hostname: page-component-6d856f89d9-mhpxw Total loading time: 0 Render date: 2024-07-16T05:11:11.854Z Has data issue: false hasContentIssue false

Low Thermal Conductivity Skutterudites

Published online by Cambridge University Press:  15 February 2011

J.-P. Fleurial
Affiliation:
T. Caillat
Affiliation:
Jet Propulsion Laboratory/California Institute of Technology, 4800, Oak Grove Drive, MS 277–207, Pasadena, CA 91109
A. Borshchevsky
Affiliation:
Jet Propulsion Laboratory/California Institute of Technology, 4800, Oak Grove Drive, MS 277–207, Pasadena, CA 91109
Get access

Abstract

Recent experimental results on semiconductors with the skutterudite crystal structure show that these materials possess attractive transport properties and have a good potential for achieving ZT values substantially larger than for state-of-the-art thermoelectric materials. Both n-type and p-type conductivity samples have been obtained, using several preparation techniques. Associated with a low hole effective mass, very high carrier mobilities, low electrical resistivities and moderate Seebeck coefficients are obtained in p-type skutterudites. For a comparable doping level, the carrier mobilities of n-type samples are about an order of magnitude lower than the values achieved on p-type samples. However, the much larger electron effective masses and Seebeck coefficients make n-type skutterudites promising candidates as well. Unfortunately, the thermal conductivities of the binary skutterudite compounds are too large, particularly at low temperatures, to be useful for thermoelectric applications.

Several approaches to the reduction of the lattice thermal conductivity in skutterudites are being pursued: heavy doping, formation of solid solutions and alloys, study of novel ternary and filled skutterudite compounds. All those approaches have already resulted in skutterudite compositions with substantially lower thermal conductivity values in these materials. Recently, superior thermoelectric properties in the moderate to high temperature range were achieved for compositions combining alloying and “filling” of the skutterudite structure. Experimental results and mechanisms responsible for low thermal conductivity in skutterudites are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Caillat, T., Borshchevsky, A., and Fleurial, J.-P., Proceedings, 7th International Conference on Thermoelectrics, ed. Rao, K., University of Texas at Arlington, p. 98 (1993).Google Scholar
2. Fleurial, J.-P., Caillat, T., and Borshchevsky, A., Proceedings, 14th International Conference on Thermoelectrics, ed. Vedernikov, M., Ioffe Physico-Technical Institute, p. 231 (1995).Google Scholar
3. Slack, G. A., Fleurial, J.-P., and Caillat, T., Naval Research Reviews, Vol. XLVIII, 2330 (1996).Google Scholar
4. Caillat, T., Borshchevsky, A., and Fleurial, J.-P., J. Appl. Phys. 80 (8) 44424449 (1996).Google Scholar
5. Dismukes, J. P., Esktrnm, L., Steigmeier, E. F., Kudman, I., and Beers, D. S., J. Appl. Phys., vol.35, p. 2899 (1964).Google Scholar
6. Mandel, N., and Donohue, J., Acta Cryst., B 27, p. 2288 (1971).Google Scholar
7. Lutz, H. D., and Kliche, G., Journal of Solid State Chemistry, vol.40, p. 64 (1981).Google Scholar
8. Slack, G., and Tsoukala, V. G., J. Appl. Phys. 76, 1665 (1994).Google Scholar
9. Borshchevsky, A., Fleurial, J.-P., Allevato, E., and Caillat, T., Proceedings, 13th International Conference on Thermoelectrics, ed. Mathiprakasam, B. and Heenan, P. (AIP Conference 316, New York), p. 31 (1995).Google Scholar
10. Borshchevsky, A., Fleurial, J.-P., and Caillat, T., Proceedings, 15th International Conference on Thermoelectrics, ed. Caillat, T. (IEEE Catalog 96TH8169), p. 112 (1996).Google Scholar
11. Callaway, T., and Baeyer, H. C. Von, Phys. Rev., vol.120, p. 1149 (1960).Google Scholar
12. Caillat, T., Kulleck, J., Borshchevsky, A., and Fleurial, J.-P., J. Appl. Phys. vol.79, 11, 1141 (1996).Google Scholar
13. Nolas, G.S., Harris, V.G., Tritt, T.M. and Slack, G.A., J. Appl. Phys. 80 (11) 63046308 (1996).Google Scholar
14. Slack, G. A., Phys. Rev, vol.126, p. 427 (1962).Google Scholar
15. Brostigen, G. and Kjekshus, A., Acta Chem. Scand. 24 (8) 29933012 (1970).Google Scholar
16. Slack, G. A., Thermoelectric Handbook, ed. by Rowe, M. (Chemical Rubber, Boca Raton, FL), p. 407 (1995).Google Scholar
17. Meisner, G. P., Torikachvili, M. S., Yang, K. N., Maple, M. B., Guertin, R. P., J. Appl. Phys., 57, vol.1, p. 3073 (1985).Google Scholar
18. Morelli, D. T., and Meisner, G. P., J. Appl. Phys. vol.77, p. 3777 (1995).Google Scholar
19. Nolas, G. S., Slack, G. A., Tritt, T. M., and Morelli, D. T., Proceedings, 14th International Conference on Thermoelectrics, ed. Vedernikov, M., Ioffe Physico-Technical Institute, p. 236 (1995).Google Scholar
20. Nolas, G. S., Slack, G. A., Caillat, T., and Meisner, G. P., J. Appl. Phys, Vol.79, 5, p. 2622 (1996).Google Scholar
21. Fleurial, J.-P., Borshchevsky, A., and Caillat, T., Morelli, D. T., and Meisner, G. P., Proceedings, 15th International Conference on Thermoelectrics, ed. Caillat, T. (IEEE Catalog 96TH8169), p. 91 (1996).Google Scholar
22. Sales, B.C., Mandrus, D. and Williams, R.K., Science, Vol.22, 13251328 (1996),Google Scholar
23. Chen, B., Xu, J.H, Uher, C., Morelli, D.T., Meisner, G.P., Fleurial, J.-P., Caillat, T. and Borshchevsky, A., Phys. Rev. B. 55 (3) 1476–1480 (1997).Google Scholar