Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:59:09.195Z Has data issue: false hasContentIssue false

Low Temperature Photoluminescence Studies of Narrow Bandgap Gaassbn Quantum Wells on GaAs

Published online by Cambridge University Press:  11 February 2011

K.E. Waldrip
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185
E.D. Jones
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185
N.A. Modine
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185
F. Jalali
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185
J.F. Klem
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185
G.M. Peake
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185
Get access

Abstract

We present low-temperature (T = 4K) photoluminescence studies of the effect of adding nitrogen to 6-nm-wide single-strained GaAsSb quantum wells on GaAs. The samples were grown by both MBE and MOCVD tech-niques. The nominal Sb concentration is about 30%. Adding about 1 to 2% N drastically reduced the bandgap energies from 1 to 0.75 eV, or 1.20 to 1.64 μm. Upon performing ex situ rapid thermal anneals, 825°C for 10s, the band gap energies as well as the photoluminescence intensities increased. The intensities increased by an order of magnitude for the annealed samples and the band gap energies increased by about 50 - 100 meV, depending on growth temperatures. The photoluminescence linewidths tended to decrease upon annealing. Preliminary results of a first-principles band structure calculation for the GaAsSbN system are also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for example articles and references therein in Photovoltaics for the 21st Century, editors Kapur, V.K., McConnell, R.D., Carlson, D., Ceasar, G.P., and Rohatgi, R., Proc. Vol. 99–11 (Electrochemical Society, Pennington, NJ 1999) and alsoGoogle Scholar
Progress in Semiconductor Materials for Optoelectronic Applications, editors: Jones, E.D., Manasreh, M.O., Choquette, K.D., Friedman, D., and Johnstone, D.K., Mater. Res. Soc. Proc. 692 (Materials Research Society, Pittsburgh, PA, 2002).Google Scholar
2. Shimizu, H., Kumada, K., Uchiyama, S., and Kasukawa, A., IEEE J. Selected Topics in Quantum Electronics 7, 355 (2001).Google Scholar
3. Gambin, V., Ha, W., Wistey, M., Kim, S. and Harris, J.S. in Progress in Semiconductor Materials for Optoelectronic Applications, editors: Jones, E.D., Manasreh, M.O., Choquette, K.D., Friedman, D., and Johnstone, D.K., Mater. Res. Soc. Proc. 692 (Materials Research Society, Pittsburgh, PA, 2002), pp. 333.Google Scholar
4. Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993);Google Scholar
Kresse, G. and Hafner, J., Phys. Rev. B 49, 14251 (1994);Google Scholar
Kresse, G. and Furthmüller, J., Comput. Mat. Sci. 6, 15 (1996);Google Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
5. Jones, E.D., Modine, N.A., Allerman, A.A., Kurtz, S.R., Wright, A.F., Tozer, S.W., and Wei, X., Phys. Rev. B 60, 4430 (1999);Google Scholar
Jones, E.D., Allerman, A.A., Kurtz, S.R., Modine, N.A., Bajaj, K.K., Tozer, S.W. and Wei, X., Phys. Rev. B 62, 7144 (2000).Google Scholar
6. Szwacki, N.G. and Boguslawski, P., Phys. Rev. B 64, 161201(R) (2001).Google Scholar