Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-16T15:15:03.409Z Has data issue: false hasContentIssue false

Low Temperature Gas Phase Synthesis of Germanium Nanowires

Published online by Cambridge University Press:  01 February 2011

Sanjay Mathur
Affiliation:
Institute of New Materials D-66041 Saarbruecken, Germany
Hao Shen
Affiliation:
Institute of New Materials D-66041 Saarbruecken, Germany
Ulf Werner
Affiliation:
Institute of New Materials D-66041 Saarbruecken, Germany
Get access

Abstract

Single crystal Ge nanowires (NWs) were obtained in high yield by gas phase decomposition of germanium di-cyclopentadienylide ([Ge(C5H5)2]), at 325 °C on iron substrates. Highresolution electron microscopy (SEM/TEM) showed Ge NWs to be uniform in terms of diameter (20 nm) and length (> 25 μm). The wire growth is selective and appears to be governed by a Ge-Fe alloy epilayer formed by the reaction between Ge clusters and iron substrate, during the initial stages of the CVD process. The supersaturation of Ge-Fe solid-solution with respect to Ge content induces the spontaneous formation of single crystal germanium nuclei that act as templates for the nanowire growth. X-ray and electron diffraction revealed the NWs to be single crystals of cubic germanium with a preferred growth direction[11–2]. The proposed base-growth model on Fe substrate is supported by TEM, EDX and XPS studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S., Nature 354, 56 (1991).Google Scholar
2. Ajayan, P. M., Chem. Rev. 99, 1787 (1999).Google Scholar
3. Hu, J. T., Odom, T. W., and Lieber, C. M., Acc. Chem. Res. 32, 435 (1999).Google Scholar
4. Xia, Y. N., Yang, P. D., Sun, Y. G., Wu, Y. Y., Mayers, B., Gates, B., Yin, Y. D., Kim, F., and Yan, H. Q., Adv. Mater. 15, 353 (2003).Google Scholar
5. Björk, M. T., Ohlsson, B. J., Sass, T., Persson, A. I., Thelander, C., Magnusson, M. H., Deppert, K., Wallenberg, L. R., and Samuelson, L., Nano Lett. 2, 87 (2003).Google Scholar
6. Heath, J. R., and Legoues, F. K., Chem. Phys. Lett. 208, 263 (1993).Google Scholar
7. Omi, H., and Ogino, T., Appl. Phys. Lett., 71, 2163 (1997).Google Scholar
8. Morales, A., and Lieber, C. M., Science 279, 208 (1998).Google Scholar
9. Zhang, Y. F., Tang, Y. H., Wang, N., Lee, C. S., Bello, I., and Lee, S. T., Phys. Rev. B 61, 4518 (2000).Google Scholar
10. Wu, Y., and Yang, P. D., Chem. Mater. 12, 605, (2000).Google Scholar
11. Hanrath, T., and Korgel, B. A., J. Am. Chem. Soc., 124, 1424 (2002).Google Scholar
12. Wang, D. W., and Dai, H. J., Angew. Chem. Int. Ed. 41, 4783 (2002).Google Scholar
13. Wagner, R. S. and Ellis, W. C., Appl. Phys. Lett. 4, 89 (1964).Google Scholar
14. Mathur, S., Shen, H., Sivakov, V., and Werner, U., Chem. Mater. (submitted).Google Scholar
15. Mathur, S., Veith, M., Shen, H., and Hüfner, S., Mater. Sci. Forum 386–388, 341 (2002).Google Scholar
16. Bosholm, O., Oppermann, H., and Däbritz, S., Zeitschrift für Naturforschung 329 (2001).Google Scholar
17. Buffat, P., and Borel, J. P., Phys. Rev. A 13, 2287 (1976).Google Scholar
18. Lauhon, L. J., Gudiksen, M. S., Wang, D., and Lieber, C. M., Nature 420, 57 (2002).Google Scholar
19. Volodin, V. A., Gorokhov, E. B., Efremov, M. D., Marin, D. V., and Orekhov, D. A., JETP Lett. 77, 411 (2003).Google Scholar