Article contents
Low Temperature Epitaxy of Si on Dihydride-Terminated Si (001): Energetic Versus Thermal Growth
Published online by Cambridge University Press: 10 February 2011
Abstract
Pulsed laser deposition of Si on dihydride-terminated (l×1) Si (001) at low temperatures yields epitaxial layers, unlike molecular beam epitaxy. Si films were grown by ultrahigh vacuum pulsed laser deposition on the dihydride surface at substrate temperatures from 40 °C to 350 ° C. Epitaxial thickness and interface roughness were measured by high-resolution cross-sectional transmission electron microscopy and found to be comparable to known data for Si films grown by molecular beam epitaxy on monohydride-terminated (2×l) Si (001). Si films were grown at 200 °C by pulsed laser deposition on the dihydride surface at argon background pressures between 10− torr and 10−1 torr. Ion probe time of flight data was collected over the same pressure range. Comparison of the results suggests that loss of epitaxy is correlated with low incident energy. This, in conjunction with information on surface reconstruction obtained from reflection high-energy electron diffraction, suggests that the mechanism enabling epitaxy on the dihydride surface is Si subplantation, a mechanism only possible in growth with an energetic beam.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997
References
- 1
- Cited by