Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T04:23:04.220Z Has data issue: false hasContentIssue false

Low Temperature, Digital Control, Fast Synthesis of 2-D BNNSs and Their Application for Deep UV Detectors

Published online by Cambridge University Press:  20 July 2015

Ali Aldalbahi
Affiliation:
Department of Chemistry, Collage of Science, King Saud University, Riyadh 11451, Saudi Arabia
Renyauan Yang
Affiliation:
Department of Physics, College of Natural Sciences, University of Puerto Rico, San Juan, PR/USA 00936
Eric Yiming Li
Affiliation:
Department of Physics, College of Natural Sciences, University of Puerto Rico, San Juan, PR/USA 00936
Muhammad Sajjad
Affiliation:
Department of Physics, College of Natural Sciences, University of Puerto Rico, San Juan, PR/USA 00936
Yihau Chen
Affiliation:
Shanghai Dian Ji University, Shanghai, China
Peter Feng*
Affiliation:
Department of Physics, College of Natural Sciences, University of Puerto Rico, San Juan, PR/USA 00936
*
**Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-787-764-2626; Fax: +1-787-764-4063.
Get access

Abstract

This paper reports low temperature, digital control, fast synthesis of high-quality boron nitride nanosheets (BNNSs) and their electronic device application. Raman scattering spectroscopy, X-ray diffraction (XRD), Transmission electron microscopy (TEM) are used to characterize the BNNSs. With the synthesized various BNNSs, two prototypic types of deep UV photodetectors have been fabricated, and sensitivity, response and recovery times, as well as repeatability have been characterized. Effects of period and thickness of BNNSs on the properties of prototypic photodetectors are also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Equally Contributing Authors.

References

REFERENCES

Pace, E. and De Sio, A., “Innovative diamond photo-detectors for UV astrophysics,” Memorie della Società Astronomica Italiana Supplement, 14, 84(2010).Google Scholar
Sun, Xiaojuan, Li, Dabing, Jiang, Hong, Li, Zhiming, Song, Hang, “Improved performance of GaN metal-semiconductor-metal ultraviolet detectors by depositing SiO2 nanoparticles on a GaN surface,” Appl. Phys. Lett., 98, 121117/1–3(2011).CrossRefGoogle Scholar
Jin, Yizheng, Wang, Jianpu, Sun, Baoquan, Blakesley, James C. and Greenham, Neil C., “Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles,” Nano Lett., 8(6), 1649(2008).CrossRefGoogle Scholar
Lin, C. R., Wei, D. H., BenDao, M. K., Chen, W. E., and Liu, T. Y., “Development of High-Performance UV Detector Using Nanocrystalline Diamond Thin Film,” International Journal of Photoenergy, 2014, ID 92152/8(2014).CrossRefGoogle Scholar
Banerjee, Swastika, Periyasamy, Ganga and Pati, Swapan K., J. Mater. Chem. A, 2, 3856(2014).CrossRefGoogle Scholar
Chunyi Zhi, C, Bando, Y, Tang, C, Kuwahara, H, & Golberg, D, Advanced Materials, 21(28), 2889 (2009).Google Scholar
Pakdel, Amir, Zhi, Chunyi, Bando, Yoshio, Nakayama, Tomonobu, and Golberg, Dmitri, ACS Nano, 5(8), 6507(2011).CrossRefGoogle Scholar
Wang, X, Pakdel, A, Zhi, C, Watanabe, K, Sekiguchi, T, Golberg, D, Bando, Y. J Phys Condens Matter. 24(31), 314205(2012).CrossRefGoogle Scholar
Feng, P. X. and Sajjad, M., Material letter, 89, 206(2012).CrossRefGoogle Scholar
Sajjad, Muhammad, Jadwisienczak, Wojciech M., and Feng, Peter, ACS Nanoscale, 6, 4577(2014).CrossRefGoogle Scholar
Li, Jin, Gui, Gui, and Zhong, Jianxin, J. Appl. Phys. 104, 094311(2008).CrossRefGoogle Scholar
Feng, Peter, Sajjad, Muhammad, Li, Eric Yiming, Zhang, Hongxin, Chu, Jin, Aldalbahi, Ali4 and Morell, Gerardo, Beilstein J. Nanotechnol. 5, 1186(2014).CrossRefGoogle Scholar
Zhang, H.X., and Feng, P. X., Appl. Mater. Interfaces, 4(1), 30(2012).CrossRefGoogle ScholarPubMed
Huei Lee, Chee, Qin, Shengyong, Savaikar, Madhusudan A., Wang, Jiesheng, Hao, Boyi, Zhang, Dongyan, Banyai, Douglas, Jaszczak, John A., Clark, Kendal W., Idrobo, Juan-Carlos, Li, An-Ping, and Yap, Yoke Khin, Adv. Mater., 25, 4544(2013).CrossRefGoogle Scholar
Lee, Gwan-Hyoung, Yu, Young-Jun, Lee, Changgu, Dean, Cory, Shepard, Kenneth L., Kim, Philip, and Hone, James, Applied Physics Letter, 99, 243114(2011).CrossRefGoogle Scholar
Feng, Peter, Li, Eric Yiming, Sajjad, Muhammad, Aldalbahi, Ali, and Chu, Jin, Science of Advanced Materials, 7, 1326(2015).CrossRefGoogle Scholar
Alem, N., Erni, R., Kisielowski, C., Phys. Rev. B 80, 155425(2009).CrossRefGoogle Scholar
Meyer, J. C., Chuvilin, A., and Algara-Siller, G., Nano Letters 9, 2683(2009).CrossRefGoogle Scholar
Li, J., Majety, S., Dahal, R., Zhao, W. P., Lin, J. Y., and Jiang, H. X., Applied Physics letters, 101, 171112(2012).CrossRefGoogle Scholar
Sajjad, M., Peng, X. Y., Chu, J., Zhang, H. X., Feng, P. X., J. Mater. Res., 28, 1747(2013).CrossRefGoogle Scholar
Sajjad, Muhammad; Ahmadi, Majid; Guinel, Maxime J-F; Lin, Yi; Feng, Peter, Journal of Materials Science, vol. 48(6), 2543(2013).CrossRefGoogle Scholar
Collazo, Ramón1 and Dietz, Nikolaus, “The Group III-Nitride Material Class: from Preparation to Perspectives in Photoelectrocatalysis”, Preprint of book chapter 8 of "Photoelectrochemical Water Splitting: Issues and Perspectives," ed. Lewerenz, H-J. and Peter, L.M., RSC Publishing, pp. 193222(2013).CrossRefGoogle Scholar
Muñoz, E., Monroy, E., Pau, J. L., Calle, F., Omnes, F., Gibart, P., J. Phys.: Condens. Matter 13, 7115(2001).Google Scholar
Schühle, U., Hochedez, J.F., Pau, J.L., Rivera, C., Munoz, E., Alvarez, J., Kleider, J.-P., Lemaire, Ph., Appourcheax, Th., Fleck, B., Peacock, A., Richter, M., Kroth, U., Gottwald, A., Castex, M.-C., Deneuville, A., Muret, P., Nesladek, M., Omnes, F., John, J., Van Hoof, C., Proc. SPIE 5171, 231238(2004).CrossRefGoogle Scholar