Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-18T12:16:45.402Z Has data issue: false hasContentIssue false

Low Temperature Deposition of Si-based Thin Films on Plastic Films Using Pulsed-Discharge PECVD under Near Atmospheric Pressure

Published online by Cambridge University Press:  01 February 2011

Mitsutaka Matsumoto
Affiliation:
[email protected], Tohoku University, engineering, Aramaki aza-Aoba, Aoba-ku, Sendai 980-8578, Japan, Sendai, N/A, Japan
Yohei Inayoshi
Affiliation:
[email protected], Tohoku University, Research Institute of Electrical Communication, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
Maki Suemitsu
Affiliation:
[email protected], Tohoku University, Research Institute of Electrical Communication, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
Setsuo Nakajima
Affiliation:
[email protected], Sekisui Chemicals Co. Ltd, 2-3-17 Toranomon, Minato-ku,, Tokyo, 105-8450, Japan
Tsuyoshi Uehara
Affiliation:
[email protected], Sekisui Chemicals Co. Ltd, 2-3-17 Toranomon, Minato-ku,, Tokyo, 105-8450, Japan
Yasutake Toyoshima
Affiliation:
[email protected], Energy Technology Research Institute, AIST, 1-1-1 Umezono, Tsukuba,, Tukuba, 305-8568, Japan
Get access

Abstract

Low temperature (150 °C) deposition of doped and undoped polycrystalline Si (poly-Si) as well as SiNX films on polyethylene terephthalate (PET) films has been achieved with practical deposition rates by using pulsed-plasma CVD under near-atmospheric pressure. The precursor is SiH4 diluted in H2 for poly-Si while N2 has been additionally used for SiNx. No inert gases such as He was used. A short-pulse based power system has been employed to maintain a stable discharge in the near-atmospheric pressures. With this technique, deposition of poly-Si thin film with virtually no incubation layer is possible, which in the case of P-doped poly-Si shows a Hall mobility (μH) of 1.5 cm2/V·s.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McCormick, C. S., Weber, C. E., Abelsona, J. R., and Gates, S. M., Appl. Phys. Lett. 70, 13 (1997).Google Scholar
2. Young, N. D., Harkin, G. Bunn, R. M., McCulloch, D. J., Wilks, R. W., and Knapp, A. G., IEEE Electron. Device Lett. 18, 19 (1997).Google Scholar
3. Holt, J.K., Goodwin, D.G., Gabor, A.M., Jiang, F. Stavola, M. and Atwater, H.A., Thin Solid Films 430, 37 (2003).Google Scholar
4. Kitabatake, H. Suemitsu, M. Kitahata, H. Nakajima, S. Uehara, T. and Toyoshima, Y. Jpn. J. Appl. Phys. 44, L683 (2005).Google Scholar
5. Iqbal, Z. and Veprec, S. J. Phys. C. 15, 377 (1982).Google Scholar
6. Xia, Hua, He, Y. L., Wang, L. C., Zhang, W. Liu, X. N., Zhang, X. K., and Feng, D. J. Appl. Phys. 78, 6705 (1995).Google Scholar
7. Houben, L. Luysberg, M. Hapke, P. Carius, R. and Finger, F. Philos. Mag. 77, 1447 (1998)Google Scholar
8. Toyoshima, Y. Arai, K. and Matsuda, A. J. Non-Cryst. Solids 114, 819 (1989).Google Scholar
9. Matsuda, A. J. Non-Cryst. Solids 338, 1 (2004).Google Scholar
10. Brogueira, P. Chu, V. Ferro, A. C., and Conde, J. P., J. Vac. Sci. & Technol. A15, 2968 (1997).Google Scholar
11. Nickel, N. H., Lengsfeld, P. and Sieber, I. Phys. Rev. B61, 15561 (2000).Google Scholar
12. Martins, R. Macarico, A., Ferreira, I. Nunes, R. Bicho, A. and Fortunato, E. Thin Solid Films 317, 144 (1998).Google Scholar
13. Peden, C.H.F. Rogers, J.W., Shinn, N.D., Kidd, K.B., and Tsang, K.L., Phys. Rev. B 47, 15622 (1993).Google Scholar
14. Jacobsohn, L.G., Schulze, R.K., Daemen, L.L., Afanasyev-Charkin, I.V., and Nastasi, M. Thin Solid Films 494, 219 (2006).Google Scholar
15. Chang, K.M., Cheng, C.C, and Lang, C.C, Solid-State Electron. 46, 1399 (2002).Google Scholar
16. Kim, Y.T., Kim, D.S., and Yoon, D.H., Mater. Sci. Eng. B 118, 242 (2005).Google Scholar