Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T18:34:19.466Z Has data issue: false hasContentIssue false

Low temperature deformation mechanisms of icosahedral AlPdMn quasicrystals.

Published online by Cambridge University Press:  01 February 2011

Michael Texier
Affiliation:
Université de Poitiers, LMP, UMR-CNRS 6630, SP2MI, BP 30179 F-86962 Futuroscope-Chasseneuil Cedex, FRANCE.
Joël Bonneville
Affiliation:
Université de Poitiers, LMP, UMR-CNRS 6630, SP2MI, BP 30179 F-86962 Futuroscope-Chasseneuil Cedex, FRANCE.
Anne Proult
Affiliation:
Université de Poitiers, LMP, UMR-CNRS 6630, SP2MI, BP 30179 F-86962 Futuroscope-Chasseneuil Cedex, FRANCE.
Jacques Rabier
Affiliation:
Université de Poitiers, LMP, UMR-CNRS 6630, SP2MI, BP 30179 F-86962 Futuroscope-Chasseneuil Cedex, FRANCE.
Ludovic Thilly
Affiliation:
Université de Poitiers, LMP, UMR-CNRS 6630, SP2MI, BP 30179 F-86962 Futuroscope-Chasseneuil Cedex, FRANCE.
Get access

Abstract

Confining pressure techniques, that superimpose a shear stress on an isostatic component, allowed us to plastically deform AlPdMn specimens at temperatures below the brittle-to-ductile transition temperature obtained using conventional uniaxial deformation tests at usual strain-rates. Microstructural observations associated with these low deformation temperatures are reported. They provide new insights on the elementary deformation mechanisms that control plasticity in this non-periodic structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wollgarten, M., Bartsch, M., Messerschmidt, U., Feuerbacher, M., Rosenfeld, R., Beyss, M., Urban, K., Phil. Mag. Letter, 71, 99 (1995).Google Scholar
[2] Scripta Mat., Viewpoint set n°. 30 “Mechanical properties of quasicrystals”, 49, pp. 1–52 (2003).Google Scholar
[3] Caillard, D., Vanderschaeve, G., Bresson, L., Gratias, D., Phil. Mag. A, 80, 237 (2000).Google Scholar
[4] Friedel, J., Proc. International Conference on Quasicrystals V, ed. Janot, C. and Mosseri, R., Tokyo, World Scientific, 5 (1995).Google Scholar
[5] Guyot, P. and Canova, G., Phil. Mag. A, 79, 2815 (1999).Google Scholar
[6] Boivin, P., Rabier, J., Garem, H., Phil. Mag., A, 61, 647 (1990).Google Scholar
[7] Rabier, J., Lattice Defects in Ceramics, Jap. J. of Applied Physics, Tokyo, 33 (1989).Google Scholar
[8] Fikar, J., Bonneville, J., Rabier, J., Baluc, N., Proult, A., Cordier, P., Stretton, I., in symposium Quasicrystals, Proc. Materials Research Society Symposium, vol 643, K.7.4.1 (2001).Google Scholar
[9] Texier, M., Proult, A., Bonneville, J., Rabier, J., Baluc, N., Cordier, P., Phil. Mag. Letters, 82, 659 (2002).Google Scholar
[10] Cordier, P., Rubie, D.C., Mat. Sci. Eng. A 309–310, 38 (2001).Google Scholar
[11] Messerschmidt, U., Geyer, B., Bartsch, M., Feuerbacher, M., Urban, K., in Symposium Quasicrystals, Proc. Materials Research Society Symposium, ed. Dubois, J.-M., Thiel, P.A., Tsai, A.-P., Urban, K., vol 553, 319 (1999).Google Scholar
[12] Texier, M., Proult, A., Bonneville, J., Rabier, J., submitted to Mat. Sci. Eng. A 2003.Google Scholar
[13] Wollgarten, M., Gratias, D., Zhang, Z., Urban, K., Phil. Mag. A, 64, 819 (1991).Google Scholar
[14] Cahn, J.W., Schechtman, D., Gratias, D., J. Mater. Res. 1, 13 (1986).Google Scholar