Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T20:40:48.366Z Has data issue: false hasContentIssue false

Low Substrate Temperature Deposition of Crystalline SiC using HWCVD

Published online by Cambridge University Press:  01 February 2011

S. Klein
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich, 52425 Jülich, Germany Tel: +49-2461-61-2813, Fax:+49-2461-61-3735, email: [email protected]
R. Carius
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich, 52425 Jülich, Germany Tel: +49-2461-61-2813, Fax:+49-2461-61-3735, email: [email protected]
L. Houben
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany
F. Finger
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich, 52425 Jülich, Germany Tel: +49-2461-61-2813, Fax:+49-2461-61-3735, email: [email protected]
Get access

Abstract

Microcrystalline silicon carbide (μc-SiC) was prepared at substrate temperatures between 300°C and 450°C using Hot Wire Chemical Vapour Deposition (HWCVD). The SiC films were deposited from monomethylsilane (MMS) diluted in hydrogen on glass and crystalline silicon substrates. The influence of the hydrogen dilution on the deposition rate and the structural and the optoelectronic properties was investigated. Infrared and Raman spectroscopy and transmission electron microscopy (TEM) were applied to study the structural properties. Highly crystalline material with large columnar grains was obtained at high hydrogen dilutions. The optical absorption below the band gap is high and the dark conductivities are far above the values expected for intrinsic SiC. At lower hydrogen dilution, less crystalline or amorphous Si1-xCx is growing, showing broader IR- and Raman peaks, lower dark conductivity and higher absorption above the band gap energy. An extended nucleation zone with large structural disorder was observed even for highly crystalline material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Liu, C.W. and Sturm, J.C., J. Appl. Phys. 82 (1997) 4558.10.1063/1.366192Google Scholar
2 Hattori, Y., Kruangam, D., Toyama, T., Okamoto, H., and Hamakawa, Y., Appl. Surf. Sci. 33/34 (1998) 1276.10.1016/0169-4332(88)90445-XGoogle Scholar
3 Kerdiles, S., Berthelot, A., Gourbilleau, F., and Rizk, R., Appl. Phys. Lett. 76 (2000) 2373.10.1063/1.126350Google Scholar
4 Rajagopalan, T., Wang, X., Lahlouh, B., Ramkumar, C.. Dutta, P., and Gangopadhyay, S., J. Appl. Phys. 94 (2003) 5252.10.1063/1.1609631Google Scholar
5 Miyajima, S., Yamada, A., and Konagai, M., Proc. 3rd World Conf. Photovoltaic Energy Conversion, Osaka (2003) 5P–A9.Google Scholar
6 Klein, S., Carius, R., Finger, F., and Houben, L., Thin Solid Films (2005) in press.Google Scholar
7 Klein, S., Finger, F., Carius, R., Wagner, H., and Stutzmann, M., Thin Solid Films 395 (2001) 305.10.1016/S0040-6090(01)01280-9Google Scholar
8 Saleh, R., Munisa, L., and Beyer, W., Thin Solid Films 426 (2003) 117.10.1016/S0040-6090(03)00003-8Google Scholar
9 Feldman, D.W., Parker, J.H., Choyke, W.J., and Patrik, L., Phys. Rev. 173 (1968) 787.10.1103/PhysRev.173.787Google Scholar
10 Wieder, H., Cardona, M., and Guarnieri, C.R., Phys. Stat. Sol. (b) 92 (1979) 99.10.1002/pssb.2220920112Google Scholar
11 Dkaki, M., Calcagno, L., Makthari, A.M., and Raineri, V., Mat. Sci. Semicond. Processing 4 (2001) 201.10.1016/S1369-8001(00)00113-XGoogle Scholar
12 Sun, Y. and Miyasato, T., Jpn. J. Appl. Phys. 37 (1998) 5485.10.1143/JJAP.37.5485Google Scholar