Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:26:13.877Z Has data issue: false hasContentIssue false

Low Melting Metal Catalysed Growth of Tin Disulfide Nanotubes

Published online by Cambridge University Press:  31 January 2011

Aswani Yella
Affiliation:
[email protected], Institute for Inorganic and Analytical Chemistry, Mainz, Rheinland Pfalz, Germany
Enrico Mugnaioli
Affiliation:
[email protected], Insitute for Physical Chemistry, Mainz, Germany
Martin Panthoefer
Affiliation:
[email protected], Institute for Inorganic and Analytical Chemistry, Mainz, Rheinland Pfalz, Germany
Ute Kolb
Affiliation:
[email protected], Insitute for Physical Chemistry, Mainz, Rheinland Pfalz, Germany
Wolfgang Tremel
Affiliation:
[email protected], Universität Mainz, Institut für Anorganische Chemie und Analytische Chemie, Mainz, Germany
Get access

Abstract

We report here the synthesis of tin disulfide nanotubes by a vapour liquid solid growth using bismuth, a low melting metal, as a catalyst. The reaction was carried out in a single step process by heating SnS2 and bismuth in a horizontal tube furnace at 800oC. TEM analysis allowed proposing a plausible mechanism for the formation of SnS2 nanotubes. Pure material could be obtained by optimizing the reaction based on a product analysis using powder X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) combined with energy dispersive X-ray spectroscopy (EDX).

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] (a) Tenne, R. Margulis, L. Genut, M. Hodes, G. Nature 1992, 360, 444446. (b) Y. Feldman, E. Wasserman, D. J. Srolovita, R. Tenne, Science 1995, 267, 222-225.Google Scholar
[2] Hachohen, Y. R. Grunbaum, E. Sloan, J. Hutchison, L. Tenne, R. Nature 1998, 395, 336337.Google Scholar
[3] Therese, H. A. Rocker, F. Reiber, A. Li, J. Stepputat, M. Glasser, G. Kolb, U. Tremel, W. Angew. Chem. 2005, 117, 267270; Angew. Chem. Int. Ed. 2005, 44, 262–265.Google Scholar
[4] Chen, J. Li, S.L. g, Tao, Z.L. Shen, Y.T. Cui, C.X. J. Am. Chem. Soc. 2003, 125, 52845285.Google Scholar
[5] Hollingsworth, J. A. Poojary, D. M. Clearfied, A. Buhro, W. E. J. Am. Chem. Soc. 2000, 122, 35623563.Google Scholar
[6] (a) Srolovitz, D. J. Safran, S. A. Homyonfer, M. Tenne, R. Phys. Rev. Lett. 1995, 74, 17791782. (b) N. G. Chopra, R. J. Luyren, K. Cherry, V. H. Crespi, M. L. Cohen, S. G. Louis, A. Zettl, Science 1995, 269, 966-967.Google Scholar
[7] Tremel, W. Finckh, E. W. Chem. unserer Zeit 2004, 38, 326339.Google Scholar
[8] Li, D. Li, X. L. He, R. R. Zhu, J. Deng, Z. X. J. Am. Chem. Soc. 2002, 124, 14111416.Google Scholar
[9] Rothschild, A. Sloan, J. Tenne, R. J. Am. Chem. Soc. 2000, 122, 51695179.Google Scholar
[10] Therese, H.A. Li, J. Kolb, U. Tremel, W. Solid State Sci. 2005, 7, 6772.Google Scholar
[11] Zelenski, C. M. Dorhout, P. K. J. Am. Chem. Soc. 1998, 120, 734742. G. Chen, G.Z. Shen, K K.B. Tang, Y.K. Liu, Y.T. Qian, Appl. Phys. A 2003, 77, 747–749.Google Scholar
[12] Li, Y. D. Li, X. L. He, R. R. Zhu, J. Deng, Z. X. J. Am. Chem. Soc. 2002, 124, 14111416.Google Scholar
[13] Mastai, Y. Homyonfer, M. Gedanken, A. Hodes, G. Adv. Mater. 1999, 11, 10101013.Google Scholar
[14] Yacaman, M. Jose, Lopes, H. Santiago, P. Galvan, D.H. Garzon, I.L. Reyes, A. Appl. Phys. Lett. 1996, 69, 10651067.Google Scholar
[15] (a) Gudiksen, M. S. Lieber, C. M. J. Am. Chem. Soc. 2000 122, 88018802.Google Scholar
[16] Cui, Y. Lauhon, L. J. Gudiksen, M. S. Wang, J. F. Lieber, C. M. Appl. Phys. Lett. 2001, 78, 22142216.Google Scholar
[17] Wagner, R.S. in Whisker Technology 47-119, Wiley-Interscience, New York, 1970.Google Scholar
[18] Ouyang, L. Maher, K. N. Yu, C. L. McCarty, J. Park, H. J. Am. Chem. Soc. 2007, 129, 133138.Google Scholar
[19] (a) Madelung, O. U. Rössler, Schulz, M. Landolt-Börnstein – Group III Condensed Matter Numerical Data and Functional Relationships in Science and Technology: Non-Tetrahedrally Bonded Elements and Binary Compounds I, Springer Verlag, 1991. (b) L. E. Conroy, K. C. Park, Inorg. Chem. 1968, 7, 459-463.Google Scholar
[20] Hulliger, F. Structural Chemistry of Layer-Type Phases, Hrsg.: F. A. Lévy, Reidel, Dordrecht and Boston: Reidel, 1977.Google Scholar
[21] Hong, S. Y. Popovitz-Biro, R., Prior, Y. Tenne, R. J. Am. Chem. Soc. 2003, 125, 1047010474.Google Scholar
[22] (a) Wiegers, G. A. Prog. Solid St. Chem. 1996, 24, 1139. (b) A. Meerschaut, Current Opinion in Solid State & Materials Science, 1996, 1, 250-259. (c) J. Rouxel, A. Meerschaut, G.A. Wiegers, J. Alloys Comp. 1995, 229, 144-157.Google Scholar
[23] Zhu, J. Peng, H. Chan, C. K. Jarausch, K. Zhang, X. F. Cui, Y. Nano Lett. 2007, 7, 10951099 Google Scholar
[24] (a) Hannon, J. B. Kodambaka, S. Ross, F. M. Tromp, R. M., Nature 2006, 440, 6971. (b) L. Cao, B. Garipcan, J. S. Atchison, C. Ni, B. Nabet, J. E. Spanier, Nano Lett. 2006, 6, 1852-1857.Google Scholar
[25] (a) Wang, D. Qian, F. Yang, C. Zhong, Z. Lieber, C. M. Nano Lett. 2004, 4, 871874. (b) K. A. Dick, K. Deppert, M. W Larsson, T. Martensson, W. Seifert, L. R. Wallenberg, L. Samuelson, Nat. Mater. 2004, 3, 380-384. (c) Q. Wan, E. N. Dattoli, W. Y. Fung, W. Guo, Y. Chen, X. Pan, W. Lu, Nano Lett. 2006, 6, 2909-2915. (d) R. Yang, Y.L. Chueh, J. R. Morber, R. Snyder, L.J. Chou, Z. L.Wang, Nano Lett. 2007, 7, 269-275.Google Scholar
[26] May, S. J. Zheng, J.G. Wessels, B. W. Lauhon, L. J. Adv, L. J.. Mater. 2005, 17, 598602.Google Scholar