Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:28:09.339Z Has data issue: false hasContentIssue false

Low Interface State Density Oxide-GaAs Structures Fabricated by In-Situ Molecular Beam Epitaxy

Published online by Cambridge University Press:  10 February 2011

M. Passlack
Affiliation:
Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
M. Hong
Affiliation:
Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
Get access

Abstract

We have extended the spectrum of molecular-beam epitaxy (MBE) related techniques by introducing in-situ deposition of oxides. The oxide films have been deposited on clean, atomically ordered (100) GaAs wafer surfaces using molecular beams of gallium-, magnesium-, silicon-, or aluminum oxide. Among the fabricated oxide-GaAs heterostructures, Ga2O3-GaAs interfaces exhibit unique electronic properties including an interface state density Dit in the low 1010 cm−2eV−1 range and an interface recombination velocity S of 4000 cm/s. The formation of inversion layers in both n- and p-type GaAs has been clearly established. Further, thermodynamic and photochemical stability of excellent electronic interface properties of Ga2O3-GaAs structures has been demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bernhardt, B., LaMacchia, M., Abrokwah, J., Hallmark, J., Lucero, R., Mathes, B., Crawforth, B., Foster, D., Clauss, K., Emmert, S., Lien, T., Lopez, E., Mazzotta, V., and Ooms, W., 1995 IEEE GaAs IC Symposium Techn. Dig., (IEEE, Piscataway, NJ, 1995) p. 18.Google Scholar
[2] Hasegawa, H., Forward, K.E., and Hartnagel, H.L., Appl. Phys. Lett. 26, p. 567 (1975).Google Scholar
[3] Herman, J.S. and Terry, F.L., Appl. Phys. Lett. 60, p. 716 (1992).Google Scholar
[4] Sandroff, C.J., Hedge, M.S., Farrow, L.A., Bhat, R., Harbison, J.P., and Chang, C.C., J.Appl.Phys. 67, p. 586 (1990).Google Scholar
[5] Callegari, A., Hoh, P.D., Buchanan, D.A., and Lacey, D., Appl. Phys. Lett. 54, p. 332 (1989).Google Scholar
[6] Wang, Z., Lin, M.E., Biswas, D., Mazhari, B., Teraguchi, N., Fan, Z., Gui, X., and Morkoc, H., Appl. Phys. Lett. 62, p. 2977 (1993).Google Scholar
[7] Spicer, W.E., Lindau, I., Skeath, P., Su, C.Y., and Chye, P., J. Vac. Sci. Technol. 17, p.1019 (1980)Google Scholar
[8] Saito, J. and Kondo, K., J.Appl.Phys. 67, p. 6274 (1990).Google Scholar