Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:05:35.170Z Has data issue: false hasContentIssue false

Low Filament Temperature Deposition of a-Si:H by Catalytic Chemical Vapor Deposition

Published online by Cambridge University Press:  01 January 1993

P. Brogueira
Affiliation:
Instituto Superior Técnico, Department of Physics, 1096 Lisboa Codex,Portugal
S. Grebner
Affiliation:
Physics Department - E-16, Technical University of Munich, D-8046 Garching, Germany
F. Wang
Affiliation:
Physics Department - E-16, Technical University of Munich, D-8046 Garching, Germany
R. schwarz
Affiliation:
Physics Department - E-16, Technical University of Munich, D-8046 Garching, Germany
V. Chu
Affiliation:
INESC, Rua Alves Redol 9, 1000 Lisboa, Portugal
J.P. Conde
Affiliation:
Instituto Superior Técnico, Department of Physics, 1096 Lisboa Codex,Portugal
Get access

Abstract

Hydrogenated amorphous silicon, a-Si:H, is deposited from silane (SiH4 ) and hydrogen (H2 ) using a tungsten wire at low filament temperatures (Tfil = 1200°C) by catalytic chemical vapor deposition.

The deposition rate increases monotonically with the depositions pressures and shows a maximum at an H2 : SiH4 flow ratio of unity. Vanishingly small deposition rates were observed for silane-only depositions and for H2 -to-SiH4 flow ratios of 2.5 and above. The optoelectronic properties show complex dependence on substrate temperature (Tsub ). Three intervals of Tsub with distinct optoelectronic were observed: as Tsub increases from 180 to 220°C, the optical bandgap, EgTauc increases from 1.9 to 2.4eV, the dark conductivity,σd, decreases from 10-10 to 10-15 Ω-1 cm -1and the photoconductivity, σph , decreases from 10-5 to 10-10Ω-1 cm -1 (region (i)). As Tsub increases from 220 to 250 °C, EgTauc decreases to 1.8eV and the photosensitivity, σphd decreases to ~ 1 due to an increase of both σd and σph (region (ii)). Throughout these two regions, the photoconductivity γ factor remains between 0.6 and 0.9 and the activation energy of the dark conductivity, Ea,σd , remains between 0.7 and 0.9eV. Above 250°C, the σph and σd remain approximately constant at 10-4 Ω-1 cm -1 and γ decreases to below 0.5 and Ea,σd ~ 0.3eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wiesmann, H., Ghosh, A. K., McMahon, T., Strongin, e M.,J. Appl. Phys. 50, 3752 (1979); U.S. Patents, 4,, 237, 150 (1980) e4, 634, 605 (1987)Google Scholar
2. Matsumura, H., Jpn. J. Appl. Phys. 25 L949 (1986).Google Scholar
3. Matsumura, H., J. Appl. Phys. 65 (11), 4396 (1989).Google Scholar
4. Doyle, J., Robertson, R.. Lin, G. H., He, M. Z., Gallagher, e A., J. Appl. Phys. 64(5), 3215 (1988).Google Scholar
5. Mahan, A. H., Carapella, J., Nelson, B. P., Crandall e I. Balberg, R. S., J. Appl. Phys. 69 (9), 6728 (1991).Google Scholar
6. Pinarbasi, M., Abelson, F.R., and Kushner, M.J., Appl. Phys. Lett. 56, 1685 (1990).Google Scholar
7. Hata, N. and Wagner, S., J. Appl. Phys. 72 (7), 2857 (1992).Google Scholar
8. Matsumura, H., Appl. Phys. Lett. 51 (11), 804 (1987).Google Scholar
9. Matsumura e H. Ihara, H., J. Appl. Phys. 64 (11), 6505 (1988).Google Scholar
10. Deshpande, S. V., Dupuie, J. L. and Gulari, E., Appl. Phys. Lett. 61 (12), 1420 (1992).Google Scholar
11. Matsumura, H., Jpn. Appl. Phys. 30, L1522 (1991).Google Scholar
12. Goodmann, A., Applied Optics, 17 2779, (1978).Google Scholar
13. Vanacek, M., Kocka, J., Strichlik, J., Kosicek, Z., Stika, O. and Triska, A., Sol. Energy Mater. 8, 411 (1983).Google Scholar
14. Wyrsh, N., Finger, F., McMahon, T. J., Vanacek, M., J. Non-Cryst. Solids 137 & 138, 347 (1991).Google Scholar
15. Wang, N. and Wagner, S., private communication.Google Scholar
16. Street, R.A., Hydrogenated amorphous silicon, Cambridge University Press (1991).Google Scholar
17. Qian, Z.M., Van Ammel, A., Michiel, II., Nijs, J. and Mertens, R., J. Appl. Phys 68 (1), 143 (1990).Google Scholar