Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:24:11.389Z Has data issue: false hasContentIssue false

Low Energy Ion Implantation / Deposition as a Film Synthesis and Bonding Tool

Published online by Cambridge University Press:  22 February 2011

André Anders
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720 On leave from Max-Planck-Institut für Plasmaphysik, Berlin, Germany
Simons Anders
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720 On leave from Max-Planck-Institut für Plasmaphysik, Berlin, Germany
Ian G. Brown
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
Igor C. Ivanov
Affiliation:
Charles Evans and Associates, 301 Chesapeake Drive, Redwood City, CA 94063
Get access

Abstract

We describe a novel means for the production of atomically-bonded thin films of a wide range of materials. The technique is a plasma and ion beam method involving synthesis of the desired surface film by plasma deposition and the simultaneous atomic mixing of the film into the substrate by low energy ion implantation from the surrounding plasma. Vacuum-arc-produced metal plasma is used for the metallic component of the film and gases can be added to form compound films. Multiple plasma generators can be used, and films of single metals, alloys, ceramics and multilayers can be formed. By repetitively pulse biasing the substrate during plasma deposition, the growing film is subjected to energetic ion bombardment, and direct and recoil ion implantation is induced. The depositing film is thereby atomically mixed to the substrate as it is formed. The films are atomically smooth, can be anywhere from a few monolayers to microns in thickness, and the interface or mixed transition zone can be tailored. Here we outline the basic plasma physics of the method and describe a number of novel surfaces which have been formed with excellent properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Barbee, T. W. Jr., Proc. SPIE 563, 3 (1985).Google Scholar
2 Spiller, E., AIP Proc. 75, 125 (1981).Google Scholar
3 The Technology and Physics of Molecular Beam Epitaxy, edited by Parker, E. H. C. (Plenum Press, New York, 1985).Google Scholar
4 Appleton, B. R., Zuhr, R. A., Noggle, T. S., Herbots, N., Pennycook, S. J. and Alton, G. D., MRS Bulletin 12, 52 (1987).Google Scholar
5 Harper, J. M. E., in Thin Film Processes, edited by Vossen, J. L. and Kern, W. (Academic Press, New York, 1978).Google Scholar
6 See, for instance, Ion Implantation and Plasma Assisted Processes, edited by Hochman, R. F., Solnick-Legg, H. and Legg, K. O. (ASM, Ohio, 1988).Google Scholar
7 Plasma Processing and Synthesis of Materials, edited by Apelian, D. and Szekely, J., Mat. Res. Soc. Symp. Proc. Vol. 98, (MRS, Pittsburgh, 1987).Google Scholar
8 Ehrich, H., Hasse, B., Mausbach, M. and Müller, K. G., J. Vac. Sci. Technol. A8, 2160 (1990).Google Scholar
9 Boxman, R. L., Goldsmith, S., Shalev, S., Yaloz, H. and Brosh, N., Thin Solid Films 139, 41 (1986).Google Scholar
10 Anders, S., Anders, A. and Brown, I. G., J. Appl. Phys. 74, 4239 (1993).Google Scholar
11 Aksenov, I. I., Vakula, S. I., Padalka, V. G., Stre'nitskii, V. E. and Khoroshikh, V. M., Zhurn Tekh. Fiz. 50, 2000 (1980); [Sov. Phys.-Tech. Phys. 25, 1164 (1980)].Google Scholar
12 Olbrich, W., Fessmann, J., Kampschulte, G. and Ebberink, J., Surface & Coatings Technol. 49, 258 (1991).Google Scholar
13 Akari, K., Tamagaki, H., Kumakiri, T., Tsuji, K., Koh, E. S. and Tai, C. N., Surface & Coatings Technol. 43/44, 312 (1990).Google Scholar
14 Martin, P. J., Netterfield, R. P., Kinder, T. J. and Descôtes, L., Surface & Coatings Technol. 49, 239 (1991).Google Scholar
15 Ahmed, N. A. G., Ion Plating Technology. (John Wiley and Sons, Chichester, 1987).Google Scholar
16 Conrad, J. R., Radtke, J. L., Dodd, R. A., Worzala, F. J. and Tan, N. C., J. Appl. Phys. 62, 4591 (1987).Google Scholar
17 Conrad, J. R., Materials Science and Engineering A116, 197 (1992).Google Scholar
18 Chen, J., Blanchard, J., Conrad, J. R. and Dodd, R. A., Surface & Coatings Technol. 53, 267 (1992).Google Scholar
19 Chen, J., Blanchard, J. P., Conrad, J. R., Fetherston, P. et al. , Wear 165, 97 (1993).Google Scholar
20 Brown, I. G., Anders, A., Anders, S., Dickinson, M. R., Ivanov, I. C., MacGill, R. A., Yao, X. Y. and Yu, K.-M., Nuclear Instrum. Meth. Phys. Res. B80/81, 1281 (1993).Google Scholar
21 Anders, A., Anders, S., Brown, I. G., Dickinson, M. R. and MacGill, R. A., First Int. Workshop on Plasma-Based Ion Implantation, Madison, WI, 1993, to be published in J. Vac. Sci. Technol. B.Google Scholar
22 Brown, I. G., Anders, A., Anders, S., Dickinson, M. R. and MacGill, R. A., First Int. Workshop on Plasma-Based Ion Implantation, Madison, WI, 1993, to be published in J. Vac. Sci. Technol. B.Google Scholar
23 Sroda, T., Meassick, S. and Chan, C., Appl. Phys. Lett. 60, 1076 (1992).Google Scholar
24 Xia, Z., Meassick, S. and Chan, C., to be published in IEEE Trans. Electron Devices.Google Scholar
25 Scheuer, J. T., Shamin, M. and Conrad, J. R., J. Appl. Phys. 67, 1241 (1990).Google Scholar
26 Steward, R. A. and Lieberman, M., J. Appl. Phys. 70, 3481 (1991).Google Scholar
27 Wood, B. P., J. Appl. Phys. 73, 4770 (1993).Google Scholar
28 Xia, Z. and Chan, C., J. Appl. Phys. 73, 3651 (1993).Google Scholar
29 Biersack, J. P., Berg, S. and Nender, C., Nucl. Instrum. Meth. Phys. Res. B59/60, 21 (1991).Google Scholar
30 Biersack, J. P. and Eckstein, W., Appl. Phys. A 34, 73 (1984).Google Scholar
31 Handbook of Ion Beam Processing Technology, edited by Cuomo, J. J., Rossnagel, S. M. and Kaufman, H.R., (Noyes, Park Ridge, 1989).Google Scholar
32 Ensinger, W., Rev. Sci. Instrum. 63, 5217 (1992).Google Scholar
33 Wolf, G. K., Surface & Coatings Technol. 43/44, 920 (1990).Google Scholar
34 Dearnley, P.A., Ion Plating, in: Ion Plating and Implantation. Conference Proceedings, Atlanta, Georgia, June 1985 (ASM, Atlanta, 1985) pp. 3138.Google Scholar
35 Mesyats, G. A. and Proskurovsky, D. I., Pulsed Electrical Discharge in Vacuum (Springer, Berlin, 1989).Google Scholar
36 Anders, A., Anders, S., Förster, A. and Brown, I. G., Plasma Sources Sci. Technol. 1, 263 (1992).Google Scholar
37 Hantzsche, E., J. Phys. D: Appl. Phys. 24, 1339 (1991); IEEE Trans. Plasma Sci. 20, 34 (1992).Google Scholar
38 Kutzner, J. and Miller, H. C., J. Phys. D: Appl. Phys. 25, 686 (1992); Contrib. Plasma Phys. 31, 261 (1991).Google Scholar
39 Edison, T. A., U.S. Patent 484 582, 1892.Google Scholar
40 Boxman, R. L. and Goldsmith, S., IEEE Trans. Plasma Sci. 17, 705 (1989).Google Scholar
41 Daalder, J. E., J. Phys. D: Appl. Phys. 9, 2379 (1976).Google Scholar
42 Tuma, D. T., Chen, C. L. and Davis, D. K., J. Appl. Phys. 49, 3821 (1978).Google Scholar
43 Anders, S., Anders, A., Yu, K. M., Yao, X. Y. and Brown, I. G., to be published in IEEEGoogle Scholar
44 Boxman, R. L. and Goldsmith, S., Surface & Coatings Technol. 52, 39 (1992).Google Scholar
45 Aksenov, I. I., Belous, V. A., Padalka, V. G. and Khoroshikh, V. M., Fiz. Plazmy 4, 758 (1978); Sov. J. Plasma Phys. 4, 425 (1978).Google Scholar
46 Falabella, S. and Sanders, D. M., J. Vac. Sci. Technol. A 10, 394 (1992).Google Scholar
47 Storer, J., Galvin, J. E. and Brown, I. G., J. Appl. Phys. 66, 5245 (1989).Google Scholar
48 Olbrich, W. and Kampschulte, G., Int. Conf. on Metallurgical Coatings and Thin Films, San Diego, April 1993; to be published in Surface & Coatings Technol. (1993).Google Scholar
49 Anders, S., Anders, A. and Brown, I. G., submitted to J. Appl. Phys. Google Scholar
50 Anders, A., Anders, S. and Brown, I. G., submitted to J. Appl. Phys. Google Scholar
51 Anders, A., Anders, S., Brown, I. G. and Chow, P., Paper RO47 at the 1993 MRS Spring Meeting, San Francisco, April 1993; MRS Symp.Proc. vol. 314: Joining and Adhesion of Advanced Inorganic Materials, pp. 205-208Google Scholar
52 Aksenov, I.I. and Strelnitskij, V. E., Surface & Coatings Technol. 47, 98 (1991).Google Scholar
53 Lossy, R. L., Pappas, D. L., Roy, R. A., Cuomo, J. J. and Sura, V. M., Appl. Phys. Lett. 61, 171 (1992).Google Scholar
54 McKenzie, D. R., Muller, D., Pailthorpe, B. A., Wang, Z. H., Kravtchinskaya, E., Segal, D., Lukins, P. B., Swift, P. D., Martin, P. J., Amaratunga, G., Gaskell, P. H. and Saeed, A., Diamond and Related Materials 1, 51 (1991).Google Scholar
55 Rother, B., Siegel, J., Breuer, K., Mühling, I., Deutschmann, S., Vetter, J., Trommer, G., Rau, B. and Heiser, C., J. Mater. Res. 6, 101 (1991).Google Scholar
56 Koskinen, J., Anttila, A. and Hirvonen, J.-P., Surface & Coatings Technol. 47, 180 (1991).Google Scholar
57 Cuomo, J. J., Doyle, J. P., Bruley, J. and Liu, J. C., J. Vac. Sci. Technol. A 9, 2210 (1991).Google Scholar
58 Wei, B., Komvopoulos, K., Anders, S., Anders, A., and Brown, I. G., submitted to Int. Conf. on Metallurgical Coatings and Thin Films, San Diego, April 1994.Google Scholar