Article contents
Low Energy Focused Ion Beam Processing
Published online by Cambridge University Press: 25 February 2011
Abstract
Focused ion beam (FIB) techniques have many advantages which stem from being maskless and have attracted much interest for various applications including in situ processing. However, reduction of damage and improvement of throughput are problems awaiting solution. For reduction of damage, low energy FIB is promising and for improvement of throughput, understanding of the basic processes and optimization of process parameters based on this understanding is crucial. This paper discusses characteristics of low energy FIB system, ion beam assisted etching and ion implantation, and effect of damage with putting emphasize on in situ fabrication. Low energy (0.05–25keV) FIB system being developed forms -lOOnm diameter ion beams and is connected with molecular beam epitaxy system. Many results indicate that low damage, maskless ion beam assisted etching is feasible using low energy beams. Recently it was also shown that for ion beam assisted etching of GaAs, pulse irradiation yields very high etching rate of 500/ion. This indicates that the optimization of the relative ratio of ion irradiation and reactant gas supply as important to achieve high etching rate. Low energy FIB is also important for selective doping for high electron mobility heterostructures of GaAs/GaAlAs, because high mobility is significantly degraded by a slight damage.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1993
References
- 1
- Cited by