Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:04:03.200Z Has data issue: false hasContentIssue false

A Long-Wavelength Infrared Photoluminescence Spectrometer for the Characterization of Semiconductor Materials

Published online by Cambridge University Press:  15 February 2011

R. P. Wright
Affiliation:
The Aerospace Corporation, M1-109, PO Box 92957, Los Angeles, CA 90009 University of California, Los Angeles, Department of Physics, 405 Hilgard Ave., Los Angeles, CA 90024
S. E. Kohn
Affiliation:
The Aerospace Corporation, M1-109, PO Box 92957, Los Angeles, CA 90009
N. M. Haegel
Affiliation:
University of California, Los Angeles, Department of Materials Science and Engineering, 405 Hilgard Ave., Los Angeles, CA 90024
Get access

Abstract

A new photoluminescence spectrometer has been developed for the characterization of optical emission in the 2.5 to 14.1 micron wavelength range. This instrument provides high sensitivity for the detection of interband and defect luminescence in a variety of infrared detector materials. The spectrometer utilizes a solid state photomultiplier detector and a circular variable filter, which serves as the resolving element. The entire spectrometer is cooled to 5K in order to decrease thermal radiation emission. Band-edge luminescence at 10.1 microns from HgCdTe samples has been readily detected with argon-ion laser excitation powers less than 70 mW/cm2. Representative spectra from HgCdTe and other infrared detector materials are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tomm, J. W., Schmidt, H., Werner, L., Herrman, K. H., Cryst. Res. Technol. 25, 1069 (1990).CrossRefGoogle Scholar
[2] Hunter, A. T., McGill, T. C., J. Appl. Phys. 52, 5779 (1981).Google Scholar
[3] Kurtz, S. R., Osbourn, G. C., Biefeld, R. M., Lee, S. R., Appl. Phys. Lett. 53, 216 (1988).Google Scholar
[4] Petroff, M. D., Stapelbroek, M. G., Kleinhans, W. A., Appl. Phys. Lett. 51, 406 (1987).Google Scholar
[5] Yen, V. L., Optical Spectra 3, 78 (1969).Google Scholar
[6] Jansson, P. A., Hunt, R. H., Plyler, E. K., J. Opt. Soc. Am. 60, 596 (1970).Google Scholar
[7] Kurtz, S. R., Bajaj, J., Edwall, D. D., Irvine, S. J. C., to be published Semicond. Sci. Technol.Google Scholar
[8] Loferski, J. J., Phys. Rev. 93, 707 (1954).Google Scholar