Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:48:35.643Z Has data issue: false hasContentIssue false

Localizing GABA Receptors and Glutamate Transporters Using Conjugated Quantum Dots in Rat Cerebellum Slices

Published online by Cambridge University Press:  31 January 2011

Abdel Illah El Abed
Affiliation:
[email protected], Univ. Paris Descartes, LNPC, Paris, France
Anne Baudot
Affiliation:
[email protected], Univ. Paris Descartes, LNPC, Paris, France
Mireille Chat
Affiliation:
[email protected], Univ. Paris Descartes, Lab. Physiologie Cérébrale, Paris, France
Sanaa Ben Khalifa
Affiliation:
[email protected], Univ. Paris Descartes, LNPC, Paris, France
Gérard Louis
Affiliation:
[email protected], Univ. Paris Descartes, LNPC, Paris, France
Get access

Abstract

GABA and glutamate are known as the principal inhibitory and excitatory neurotransmitters in the vertebrate central nervous system, respectively. However, recent electro-physiological and immunogold data reported by Stell et al. [1] indicate that GABA may undergo also an excitatory action on presynaptic varicosities of parallel fibers (PFs) in the molecular layer of the rat cerebellum. PFs are axonal extensions, with a cross section of about 0.1 m, of the glutamatergic granule cells. Such an unexpected excitatory action of GABA indicates clearly the presence of GABA receptors in the PFs of granule cells. We show in this study that quantum dots may be used specifically and efficiently to label two endogenous synaptic proteins, namely R-GABAA-1 receptors (GABAA Rs) and glutamate transporters (VGLUT1) in order to target their localization in very small structures such as the presynaptic varicosities of the PFs, in agreement with the results recently reported by Stell et al..

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Stell, B. M., Rostaing, P., Triller, A. and Marty, A. J. Neuroscience 27, 9022 (2007).Google Scholar
2 Alivisatos, A. P. Science 271, 933 (1996).Google Scholar
3 Bruchez, M. Moronne, M. Gin, P. Weiss, S. & Alivisatos, A. P. Science 281, 2013 (1998).Google Scholar
4 Chan, W. C. W. and Nie, S. M. Science 281, 2016 (1998).Google Scholar
5 Mattoussi, H. Mauro, J. M. Goldman, E. R. Anderson, G. P. Sundar, V. C. Mikulec, F. V. and Bawendi, M. G. JACS 122, 12142 (2000).Google Scholar
6 Dubertret, B. Skourides, P. Norris, D. J. Noireaux, V. Brivanlou, A. H. Libchaber, A. Science 298, 1759 (2000).Google Scholar
7 Dahan, M. Levi, S. Luccardini, C. Rostaing, P. Riveau, B. and Triller, A. Science 302, 442 (2003).Google Scholar
8 Michalet, X. Pinaud, F. F. Bentolila, L. A. Tsay, J. M. Doose, S. Li, J. J. Sundaresan, G. Wu, A. M. Gambhir, S. S. and Weiss, S. Science 307, 538 (2005).Google Scholar
9 Giepmans, B. N. Deerinck, T. J. Smarr, B. L. Jones, Y. Z. and Elisman, M. H. Nature Methods 2, 743 (2005).Google Scholar
10 Akhtar, R. S. Latham, C. B. Siniscalco, D. Fuccio, C. and Roth, K. in “Quantum Dots: Applications in Biology” edited by Bruchez, M. P. and Hotz, C. M. (Methods Mol. Biol. 374, Humana Press Inc., Totowa, 2007) pp. 1128.Google Scholar
11 Ramnani, N. Nature Reviews 7, 511 (2006).Google Scholar
12 Shepherd, G. M. G. and Raastad, M. The Cerebellum 2, 110 (2003).Google Scholar
13 Thompson, R. E. Larson, D. R. and Web, W. W. Biophys. Journal 82, 2775 (2002).Google Scholar
14 Dahan, M. in “Nanoparticles in Biomedical Imaging” edited by Bulte, J. W. M. and Modo, M. M. J. (Fundamental Biomedical Technologies, Vol. 3, Springer 2007) pp. 427441.Google Scholar