Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T18:16:19.973Z Has data issue: false hasContentIssue false

Localized Vibrational Modes of Carbon-Hydrogen Complexes in MOCVD Grown GaN and AlGaN thin films

Published online by Cambridge University Press:  17 March 2011

J. Chen
Affiliation:
Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131.
Q. Zhou
Affiliation:
Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131.
Y. Berhane
Affiliation:
Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131.
M. O. Manasreh
Affiliation:
Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131. E-Mail:[email protected]
C. A. Tran
Affiliation:
EMCORE Corporation, 394 Elizabeth Ave, Somerset, NJ 08873
M. Pophristic
Affiliation:
EMCORE Corporation, 394 Elizabeth Ave, Somerset, NJ 08873
I. T. Ferguson
Affiliation:
EMCORE Corporation, 394 Elizabeth Ave, Somerset, NJ 08873
Get access

Abstract

Localized vibrational modes of carbon-hydrogen complexes in metalorganic chemical vapor deposition grown GaN on sapphire were studied using a Fourier-transform infrared spectroscopy technique. Three distinctive localized vibrational modes were observed around 2850, 2922, and 2959 cm−1 for undoped, Si- and Mg-doped samples. These peaks are related to CH, CH2, and CH3 defect complexes, respectively. It is also observed that the frequencies and intensities of the localized vibrational modes are sample dependent.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Amano, A., Akasaki, I., Kozowa, T., Hiramatsu, K., Sawak, N., Ikeda, K., and Ishii, Y., J. Luminescence 40–41, 121 (1988).Google Scholar
2. Fischer, D. W. and Manasreh, M. O., J. Appl. Phys. 68, 2504 (1990).Google Scholar
3.GaN and Related Materials”, edited by Pearton, S. J., Vol 2, chapter 11, (Gordon and Breach, Amsterdam, 1997).Google Scholar
4. Yi, G. C. and Wessels, B. W., Appl. Phys. Lett. 70, 357 (1997).Google Scholar
5. Brandt, M. S., Ager, J. W. III, Gätz, W., Johnson, N. M., Harris, J. S. Jr, Molnar, R. J., and Moustakas, T. D., Phys. Rev. B 49, 14758 (1994).Google Scholar
6. Lee, S.-G. and Chang, K. J., Phys. Rev. B 53, 9784 (1996).Google Scholar
7. Estreicher, S. K. and Boucher, D. E. in “GaN and Related Materials”, edited by Pearton, S. J., Vol 2, chapter 6, (Gordon and Breach, Amsterdam, 1997).Google Scholar
8. Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 31, 1258 (1992).Google Scholar
9. Vechton, J. A. Van, Zook, J. D., Horning, R. D., and Goldenberg, B., Jpn. J. Appl. Phys. 31, 3662 (1992).Google Scholar
10. Ohba, Y. and Hatano, A., Jpn. J. Appl. Phys. 33, L1367 (1994).Google Scholar
11. Gätz, W. Johnson, N. M., Bour, D. P., McCluskey, M. D., and Haller, E. E., Appl. Phys. Lett. 69, 3725 (1996).Google Scholar
12. Clerjaud, B., Cäte, D., and Lebkiri, A., phys. stat. sol. (b) 210, 497 (1998).Google Scholar
13. Duan, J. Q., Zhang, B. R., Zhang, Y. X., Wang, L. P., Qin, G. G., Zhang, G. Y., Tong, Y. Z., Jin, S. X., Yang, Z. J., Zhang, X., and Xu, Z. H., J. Appl. Phys. 82, 5745 (1997).Google Scholar