Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T15:38:29.782Z Has data issue: false hasContentIssue false

Localized Light Focusing and Super Resolution Readout via Chalcogenide Thin Film

Published online by Cambridge University Press:  01 February 2011

Junji Tominaga
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology, Center for Applied Near-Field Optics Research, Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Japan, N/A, 305-8562, Japan
Paul Fons
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology, Center for Applied Near-Field Optics Research, Tsukuba, N/A, 305-8562, Japan
Takayuki Shima
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology, Center for Applied Near-Field Optics Research, Tsukuba, N/A, 305-8562, Japan
Kazuma Kurihara
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology, Center for Applied Near-Field Optics Research, Tsukuba, N/A, 305-8562, Japan
Takashi Nakano
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology, Center for Applied Near-Field Optics Research, Tsukuba, N/A, 305-8562, Japan
Alexander Kolobov
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology, Center for Applied Near-Field Optics Research, Tsukuba, N/A, 305-8562, Japan
Stephane Petit
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology, Center for Applied Near-Field Optics Research, Tsukuba, N/A, 305-8562, Japan
Get access

Abstract

We have demonstrated that certain chalcogenide layers within a spinning super-RENS optical disc allow to squeeze the 650 nm laser beam to a spot size as fine as 50 nm using a 15-nm chalcogenide film. The near-field light was focused at a depth of just over 30 nm after passing through a chalcogenide film. Finite-difference time-domain (FDTD) simulations also reproduced these results. We suggest that a conductive ring aperture generated in the chalcogenide layers plays an important role in the localized light focusing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abbe, E., Archiv. F. Mikroskop. 9, 413 (1873).Google Scholar
2. Kim, J., Hwang, I., Yoon, D., Park, I., D. Shin. Kikukawa, T., Shima, T., and Tominaga, J., Appl. Phys. Lett. 83, 1701 (2003).Google Scholar
3. Kim, J., Hwang, I., Bae, J., Lee, J., Park, H., Park, I., Kikukawa, T., Fukuzawa, N., Kobayashi, T. and Tominaga, J., Jpn. J. Appl. Phys. 45, 1370 (2006).Google Scholar
4. Takamori, N., Yamamoto, M., Mori, G., Tajima, H., and Takahashi, A., Jpn. J. Appl. Phys. 45, 1366 (2006).Google Scholar
5. Fang, J. W., Wu, C. C., Liao, A., Lin, W. C., and Tsai, D. P., Jpn. J. Appl. Phys. 45, 1383 (2006).Google Scholar
6. Shi, L. P., Chong, T. C., Hu, X., Li, J. M., and Miao, X. S., Jpn. J. Appl. Phys. 45, 1385 (2006).Google Scholar
7. Kim, S. Y., Park, S. U., Li, X. Z., Kim, S. J., and An, S. H., Jpn. J. Appl. Phys. 45, 1390 (2006).Google Scholar
8. Tominaga, J., Nakano, T., and Atoda, N., Appl. Phys. Lett. 73, 2078 (1998).Google Scholar
9. Kim, J., Hwang, I., Kim, H., Yoon, D., Park, I., Shin, D., Park, Y., and Tominaga, J., Jpn. J. Appl. Phys. 43, 4921 (2004).Google Scholar
10. Tominaga, J. and Nakano, T., Optical Near-Field Recording, Springer, Heidelberg, 2005.Google Scholar
11. Tominaga, J., Shima, T., Kuwahara, M., Fukaya, T., Kolobov, A., and Nakano, T., Nanotechnology 15, 411 (2004).Google Scholar
12. Kolobov, A., Fons, P., Frenkel, A., Ankudinov, A., Tominaga, J., and Uruga, T., Nature Materials 3, 703 (2004).Google Scholar
13. Lezec, H. J. and Thio, T., Opt. Express 12, 3629 (2004).Google Scholar
14. Shima, T. and Tominaga, J., Jpn. J. Appl. Phys. 42, 3479 (2003).Google Scholar
15. Delaey, L.Zeitschrift fure Metallkunde 80,731736 (1989)Google Scholar
16. Kolobov, A.V., Haines, J., Pradel, A., Ribes, M., Fons, P., Tominaga, J., Katayama, Y., Hammouda, T., and Uruga, T., Phys. Rev. Lett., 2006 (in print).Google Scholar
17. Hecht, E., Optics, Addison-Wesley, 1987.Google Scholar
18. Kim, S. Y., Kim, A. J., Seo, H., and Kim, M. R., Jpn. J. Appl. Phys. 38, 1713 (1999).Google Scholar
19. Weinic, W., Pamungkas, A., Detemple, R., Steimer, C., Blugel, S., and Wuttig, M., Nature Materials 5, 56 (2006).Google Scholar
20. Kifune, K., Kubota, Y., Matsunaga, T., and Yamada, N., Acta Crystallographica B 61, 492 (2005).Google Scholar
21. Laurenzis, M., Forest, M., Bolivar, P. H., and Kurz, H., Jpn. J. Appl. Phys. 43, 4700 (2004).Google Scholar
22. Khvostantsev, L.G., Orlov, A.I., Abrikosov, N. Kh., and Ivanova, L.D., Physica Staqtus Solidi, a 58, 37 (1980).Google Scholar
23. Kikukawa, T., Nakano, T., Shima, T., and Tominaga, J., Appl. Phys. Lett. 81, 4697 (2002).Google Scholar