Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-04T19:09:35.663Z Has data issue: false hasContentIssue false

Localized 56Fe+ ion implantation of TiO2 using anodic porous alumina

Published online by Cambridge University Press:  31 January 2011

Jens Jensen
Affiliation:
[email protected]@telia.com, Linköping University, Department of Physics, Chemistry and Biology - IFM, Linköping, Sweden
Ruy Sanz
Affiliation:
[email protected], Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Madrid, Madrid, Spain
Mirian Jaafar
Affiliation:
[email protected], Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Madrid, Madrid, Spain
Manuel Hernández-Vélez
Affiliation:
[email protected], Universidad Autónoma de Madrid, Departamento de Física Aplicada, Madrid, Spain
Agustina Asenjo
Affiliation:
[email protected], Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Madrid, Madrid, Spain
Anders Hallen
Affiliation:
[email protected], Royal Institute of Technology, ICT-MAP, Stockholm, Sweden
Manuel Vázquez
Affiliation:
[email protected], Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Madrid, Madrid, Spain
Get access

Abstract

We present result following localized ion implantation of rutile titanium dioxide (TiO2) using anodic porous alumina as a mask. The implantation were performed with 100 keV 56Fe+ ions using a fluence of 1.3·1016 ions/cm2. The surface modifications where studied by means of SEM, AFM/MFM and XRD. A well-defined hexagonal pattern of modified material in the near surface structure is observed. Local examination of the implanted areas revealed no clear magnetic signal. However, a variation in mechanical and electrostatic behavior between implanted and non-implanted zones is inferred from the variation in AFM signals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Meldrum, A. Haglund, R. F. Jr. , Boatner, L. A. and White, C. W.. Adv. Mater. 13, 1431 (2001).Google Scholar
2 Shibata, T. Suguro, K. Sugihara, K.; Nishishashi, T.; Fujiyama, J.; Sakurada, Y. IEEE transactions on semiconductor manufacturing 15, 183, (2002).Google Scholar
3 Knystautas, E.Engineering Thin Films and Nanostructures with Ion Beams’, Optical Science and Engineering Series Vol. 95 CRC Press (2005).Google Scholar
4 Ion-beam-based Nanofabrication, edited by Ila, D. Baglin, J. Kishimoto, N. Chu, P.K. MRS symposium proc. Vol 1020 (2007), and MRS spring meeting 2009, symposium DD.Google Scholar
5 Matsuura, N. et al. , Appl. Phys. Lett. 81, 4826 (2002).Google Scholar
6 Shin, S.W. et al. , Nanotechnology 16, 1392 (2005).Google Scholar
7 Nakamura, M. Nigo, S. Kishimoto, N. Trans. Mater. Res. Soc. Jpn. 33, 1101 (2008).Google Scholar
8 Janisch, R. Gopal, P. and Spaldin, N. A. J. Phys.: Condens. Matter 17, R657 (2005).Google Scholar
9 Guermazi, M. et al. , Mat. Res. Bull. 18, 529 (1983)Google Scholar
10 Zhou, M. et al. , J. Appl. Phys. 103, 083907 (2008).Google Scholar
11 Fujishima, A. Hashimoto, K. and Watanabe, T. TiO2 Photocatalysis: Fundaments and Applications, BKC, Tokio, (1999).Google Scholar
12 Adàn, C., Bahamonde, A. Fernández-García, M.,Martínez-Arias, A., Appl. Catal. B 72, 11 (2007).Google Scholar
13 Jensen, J. Skupinski, M. Hjort, K. Sanz, R. Nucl. Instrum. and Methods B 266, 3113 (2008).Google Scholar
14 Masuda, H. and Fukuda, F. Science 268, 1466 (1995).Google Scholar
15www.srim.org.Google Scholar
16 Sanz, R. Jensen, J. Johansson, A. Skupinski, M. Possnert, G. Boman, M. Hernandez-Vélez, M., Vazquez, M. Hjort, K.. Nanotechnology 18, 305303 (2007).Google Scholar
17 Zhu, S. Wang, L.M. Zu, X.T. and Xiang, X. Appl. Phys. Lett. 88, 043107 (2006).Google Scholar
18 Dumas, C. et al. , Microelectronic Engineering 85, 2358 (2008).Google Scholar
19 Diebold, U. Surf. Sci. Rep. 48, 53 (2003).Google Scholar
20 Sanz, R. Jensen, J. González-Díaz, G., Martínez, O., Vázquez, M. and Hernández-Vélez, M., Nanoscale Research. Lett., Accepted (2009).Google Scholar
21 Sun, K. Zhu, S. Fromknecht, R. Linker, G. Wang, L.M. Materials Letters 58, 547 (2004).Google Scholar
22 Fromknecht, R. Linker, G. Wang, L.M. Zhu, S. Sun, K. Veen, A. van, Huis, M. van, Niemeyer, J. Weimann, T. Wang, J. Surf. Interface Anal. 36, 193 (2004).Google Scholar