Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:46:48.846Z Has data issue: false hasContentIssue false

Local Structure and Er3+ Emission from Pseudo-Amorphous GaN:Er Thin Films

Published online by Cambridge University Press:  09 August 2011

S. B. Aldabergenova
Affiliation:
Institut für Werkstoffwissenschaften, Universität Erlangen-Nürnberg, Cauerstr.6 91058 Erlangen, Germany
M. Albrecht
Affiliation:
Institut für Werkstoffwissenschaften, Universität Erlangen-Nürnberg, Cauerstr.6 91058 Erlangen, Germany
A. A. Andreev
Affiliation:
A.F.Ioffe Physical-Technical Institute, St.-Petersburg 194021, Russia
C. Inglefield
Affiliation:
University of Utah, Salt Lake City, UT 84112, USA
J. Viner
Affiliation:
University of Utah, Salt Lake City, UT 84112, USA
P. C. Taylor
Affiliation:
University of Utah, Salt Lake City, UT 84112, USA
H. P. Strunk
Affiliation:
Institut für Werkstoffwissenschaften, Universität Erlangen-Nürnberg, Cauerstr.6 91058 Erlangen, Germany
Get access

Abstract

We report on strong Er3+ luminescence in the visible and infra-red regions at room temperature in amorphous GaN:Er thin films prepared by DC magnetron co-sputtering. The intensity of the Er3+ luminescence at 1.535 μm corresponding to 4I13/24I15/2 transitions is greatly enhanced after annealing at 750°C. In this material GaN crystallites have formed and embedded in the continuous amorphous matrix. The crystallites are 4 to 7 nm in diameter as analyzed by high resolution transmission electron microscopy. The absorption edge, extending three orders of magnitude in absorption coefficient in the spectral range from 0.5 to 3.5 eV, is superimposed on resonant absorption bands of Er3+ ions.The total photoluminescence spectrum consists of welldefined Er3+ luminescence peaks imposed on a broad band edge luminescence from the amorphous GaN host matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Favennec, P. N., L'Haridon, H., Moutonnet, D., Salvi, M., and Gauneau, M. in Rare Earth Doped Semiconductors, edited by Pomrenke, G. S., Klein, P. B., and Langer, D. W., Mater.Res. Soc. Symp.Proc., vol.31 (Materials Research Society, Pittsburg, PA, 1993), p.181.Google Scholar
2. Wilson, R. G., Schwartz, R. N., Abernathy, C. R., Pearton, S. J., Newman, N., Rubin, M., Fu, T., and Zavada, J. M., Appl.Phys.Lett. 65, 992 (1994).Google Scholar
3. Kim, S., Rhee, S. J., Turnbull, D. A., Reuter, E. E., Li, X., Coleman, J. J., and Bishop, S. G., Appl.Phys.Lett. 71, 231 (1997).Google Scholar
4. Wu, X., Hommerich, U., Mackenzie, J. D., Abernathy, C. R., Pearton, S. J., Schwartz, R. N., Wilson, R. G. and Zavada, J. M., Appl.Phys.Lett. 70, 2126 (1997).Google Scholar
5. Thaik, Myo, Hommerich, U., Schwartz, R. N., Wilson, R. G., and Zavada, J. M., Appl.Phys. Lett. 71, 2641 (1997).Google Scholar
6. Kim, S., Rhee, S. J., Turnbull, D. A., Li, X., Coleman, J. J., Bishop, S. G., and Klein, P. B., Appl. Phys.Lett. 71, 2662 (1997).Google Scholar