Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-20T00:45:08.212Z Has data issue: false hasContentIssue false

Local Reaction Probability Effects in Non-Classical Kinetics: Batch and Steady State

Published online by Cambridge University Press:  15 February 2011

Zhong-You Shi
Affiliation:
University of Michigan, Department of Chemistry, Ann Arbor, MI 48109-1055, U.S.A.
Raoul Kopelman
Affiliation:
University of Michigan, Department of Chemistry, Ann Arbor, MI 48109-1055, U.S.A.
Get access

Abstract

The reaction A+A→0 is simulated in 1-D and 2-D square lattices with various local reaction probabilities, P. The effective reaction order, X, and the nearest neighbor distance distribution (NNDD), are evaluated in all these reactions. For batch reactions, sharp increases in X with increasing P occur at early times. Classical reaction limited kinetics is obtained at early times only when P→0. At long times, all reactions are in the non-classical, diffusion limited regime, regardless of P. For steady state reactions, our results demonstrate a similar behavior of X with P. The NNDD at steady state in 1-D media at P=1.0, i.e. diffusion limited reaction, follows the previously reported skewed exponential shape. This is no longer true for P<I. Finally, at P→0, as expected, an exponential (Poissonian) distribution is obtained for both reaction conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Shi, Z-Y. and Kopelman, R., J. Phys. Chem. 96: 68586861 (1992)Google Scholar
[2] Shi, Z-Y. and Kopelman, R., J. Chem. Phys. 167:149155 (1992)Google Scholar
[3] Kopelman, R., Science, 241:1620 (1988); H. Taitelbaum, S. Havlin, J. E. Kiefer, B. Trus and G. H. Weiss J. Stat. Phys. 65:873 (1991); G. Zumofen, J. Klafter and A. Blumen, J. Stat. Phys. 65:1015 (1991).Google Scholar
[4] Argyrakis, P. and Kopelman, R., Phys. Rev. A 41:2114, 2121 (1990).Google Scholar
[5] Kopelman, R., Parus, S. T. and Prasad, J., Chem. Phys. 128:209 (1988).Google Scholar
[6] Koo, Y-E. and Kopelman, R., J. Stat. Phys. 65:893 (1991).Google Scholar
[7] Taitelbaum, H., Kopelman, R., Weiss, G. H. and Havlin, S., Phys. Rev. A 41:3116 (1990); H. Taitelbaum, Ph. D Thesis, Bar-Ilan Univ. (1992).Google Scholar
[8] Clement, E., Sander, L. M. and Kopelman, R., Phys. Rev A 39:6472 (1989).Google Scholar
[8] Clement, E., Kopelman, R. and Sander, L. M., Chem. Phys. 146:343 (1990).Google Scholar
[9] Kopelman, R., Hoshen, J., Newhouse, J. S. and Argyrakis, P., J. Stat. Phys. 30:335 (1983).Google Scholar
[10] Argyrakis, A. and Kopelman, R., Phys. Rev. A 41:2114 (1990);Phys. Rev. A 41,2121 (1990).Google Scholar
[11] Argyrakis, A. and Kopelman, R., Phys. Rev. A 45:5814 (1992).Google Scholar
[12] Doering, C. R. and ben-Avraham, D. Phys. Rev. Lett. 62: 2563 (1989)Google Scholar
[13] Kopelman, R.,Parus, S. J. and Prasad, J. Chem. Phys. 128: 209 (1988)Google Scholar
[14] Parus, S. J. and Kopelman, R. Phys. Rev. B 39: 889 (1989)Google Scholar
[15] Hertz, P., Math. Ann. 67:387 (1909)Google Scholar
[16] Li, L., Clement, E., Argyrakis, P., Harmon, L. A., Parus, S. J., and Kopelman, R., in Fractal Aspects of Materials; Disordered System II, edited by Weitz, D. A., Sander, L. M., and Mandelbrot, B. B. (Materials Research Society, Pittsburgh, 1988), p. 211.Google Scholar