Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:37:58.740Z Has data issue: false hasContentIssue false

Local Electromechanical Properties of CaCu3Ti4O12 Ceramics

Published online by Cambridge University Press:  01 February 2011

Ronald Tararam
Affiliation:
[email protected], Universidade Estadual Paulista, Departamento de Físico-Química, Araraquara, Brazil
Igor Bdikin
Affiliation:
[email protected], University of Aveiro, Department of Mechanical Engineering & TEMA, Aveiro, Portugal
Jose Varela
Affiliation:
[email protected], Universidade Estadual Paulista, Departamento de Físico-Química, Araraquara, Brazil
Paulo R Bueno
Affiliation:
[email protected], Universidade Estadual Paulista, Araraquara, Brazil
Andrei L. Kholkin
Affiliation:
[email protected], University of Aveiro, Department of Ceramics and Glass Engineering & CICECO, Aveiro, Portugal
Get access

Abstract

Scanning probe microscopy (SPM) was used to probe piezoelectric vibrations and local conductivity in CaCu3Ti4O12(CCTO) ceramics at room temperature. Piezoelectric contrast was observed on the polished surfaces of CCTO in both vertical (out-of-plane) and lateral (in-plane) modes and depended on the grain orientation varying in sign and amplitude. The piezoelectric contrast is shown to be controlled by the electrical bias (local poling) and displayed a ferroelectric-like reversible hysteresis accompanied with a change of the phase of piezoelectric signal. Flexoelectric effect (strain-gradient-induced polarization) due to surface relaxation was invoked to explain the observed contrast inside the grains.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Subramanian, M.A., Li, D., Duran, N., Reisner, B.A. and Sleight, A.W., J. Solid State Chem. 151 323 (2000).Google Scholar
2 Subramanian, M. A. and Sleight, A.W., Solid State Sci. 4, 347 (2002).Google Scholar
3 Sinclair, D. C., Adams, T. B., Morrison, F. D., and West, A. R., Appl. Phys. Lett. 80, 2153 (2002).Google Scholar
4 Yang, J., Shen, M. R., and Fang, L., Mater. Lett. 59, 3990 (2005).Google Scholar
5 Zhang, L., Appl. Phys. Lett. 87, 022907 (2005).Google Scholar
6 Adams, T. B., Sinclair, D. C., and West, A. R., Adv. Mater. 14, 1321 (2002).Google Scholar
7 Kolev, N., Bontchev, R. P., Jacobson, A. J., Popov, V. N., Hadjiev, V. G., Litvinchuk, A. P., and Iliev, M. N., Phys. Rev. B 66, 132102 (2002).Google Scholar
8 Cohen, M. H., Neaton, J. B., He, L. X., and Vanderbilt, D., J. Appl. Phys. 94, 3299 (2003).Google Scholar
9 Li, G. L., Yin, Z., and Zhang, M. S., Phys. Lett. A 344, 238 (2005).Google Scholar
10 Ohwa, H., Nakada, A., Naitou, K., Yasuda, N., Iwata, M., and Ishibashi, Y., Ferroelectrics 301, 185 (2004).Google Scholar
11 Almeida, A. F. L., Oliveira, R. S. de, Goes, J. C., Sasaki, J. M., Souza, A. G., Mendes, J., and Sombra, A. S. B., Mater. Sci. Eng. B 96, 275 (2002).Google Scholar
12 Chung, S., Kim, I., and Kang, S., Nat. Mater. 3, 774 (2004).Google Scholar
13 Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S., and Ramirez, A. P., Science 293, 673 (2001).Google Scholar
14 Liu, Y., Withers, R. L., and Wei, X. Y., Phys. Rev. B 72, 134104 (2005).Google Scholar
15 Ke, S. M., Huang, H. T., and Fan, H. Q., Appl. Phys. Lett. 89, 182904 (2006).Google Scholar
16 Zhu, Y., Zheng, J. C., Wu, L., Frenkel, A. I., Hanson, J., Northrup, P., and Ku, W., Phys. Rev. Lett. 99, 037602 (2007)Google Scholar
17 Shvartsman, V. V. and Kholkin, A. L., “Evolution of nanodomains in 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 single crystals”, J. Appl. Phys. 101, 064108 (2007).Google Scholar
18 Kholkin, A. L., Kalinin, S. V., Roelofs, A., and Gruverman, A., in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale” vol. 1, p. 239, ed. By Kalinin, S and Gruverman, A (Springer, 2006).Google Scholar
19 Kholkin, A. L., Bdikin, I. K., Shvartsman, V. V., and Pertsev, N. A., Nanotechnology 18, 095502 (2007).Google Scholar
20 Bdikin, I. K., Shvartsman, V. V., and Kholkin, A. L., Appl. Phys. Lett. 83, 4232 (2003).Google Scholar
21 Rodriguez, B. J., Jesse, S., Baddorf, A. P., Kalinin, S.V., and Gruverman, A., Nanotechnology 2, 667 (2005).Google Scholar
22 Mamin, R. F., Bdikin, I. K., and Kholkin, A. L., Appl. Phys. Lett. 94, 222901 (2009)Google Scholar
23 Fang, L., Shen, M., and Cao, W., Appl. Phys. Lett. 95, 6483 (2004).Google Scholar
24 Zubko, P., Catalan, G., Buckley, A., L, P. R.. , Welche, and Scott, J. F., Phys. Rev. Lett. 99, 167601 (2007).Google Scholar
25 Kholkin, A., Bdikin, I., Ostapchuk, T., and Petzelt, J., Appl. Phys. Lett. 93 222905 (2008).Google Scholar
26 Kalinin, S. V. and Bonnell, D. A., Phys. Rev. B 63, 125411 (2001).Google Scholar