Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:44:15.162Z Has data issue: false hasContentIssue false

Local Crystal Structure Modifications in Pulsed Laser Deposited Colossal Magnetoresistive Oxide Thin Films

Published online by Cambridge University Press:  15 March 2011

M. Alper Sahiner
Affiliation:
Seton Hall University, Physics Department, South Orange, New Jersey 07079
Wiqar Shah
Affiliation:
Seton Hall University, Physics Department, South Orange, New Jersey 07079
Marc Aranguren
Affiliation:
Seton Hall University, Physics Department, South Orange, New Jersey 07079
Jeffrey Serfass
Affiliation:
Seton Hall University, Physics Department, South Orange, New Jersey 07079
Joseph C. Woicik
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
Get access

Abstract

The local structure around the manganese atom is probed by extended x-ray absorption spectroscopy (EXAFS) measurements in pulsed laser deposited thin films of La11xCaxMnO3 (x=0.1210.53). The thin films were deposited on various single crystal oxide substrates. The effect of the lattice parameter of the substrate on the local structural modifications around Mn atom is investigated. All the x-ray absorption experiments were performed at the National Synchrotron Light Source of Brookhaven National Laboratory. By detailed EXAFS theoretical modeling for the possible local structures and the least square fitting to the EXAFS data using these models, the overall substrate and the Ca concentration effects are probed. The EXAFS results indicate a rigid Mn-O bonding, but response of the Mn-O-Mn bond angle upon variations of the substrate lattice constant and Ca substitution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Desfeux, R., Bailleul, S., Da Costa, A., Prellier, W., Haghiril-Gosnet, A. M., Applied Physics Letters, 2001. 78(23): p. 36813683.Google Scholar
2. Miniotas, A., Vailionis, Arturas, Svedberg, Eric B., Karlsson, Ulf O., Journal of Applied Physics, 2001. 89(4): p. 21342137.Google Scholar
3. Booth, C.H., Bridges, F., Kwei, G. H., Lawrence, J. M., Cornelius, A. L., Neumeier, J. J., Physical Review B, 1998. 57(17): p. 10440.Google Scholar
4. Ankudinov, A.L., Ravel, B., Rehr, J. J., Conradson, S. D., Physical Review B, 1998. 58(12): p. 7565.Google Scholar
5. Schiffer, P., Ramirez, A. P., Bao, W., Cheong, S. W., Physical Review Letters, 1995. 75(18): p. 3336.Google Scholar
6. Norby, P., Andersen, I. G. Krogh Andersen, E., Krogh Andersen, N. H. Journal of Solid State Chemistry, 1995. 119(1): p. 191196.Google Scholar
7. Newville, M., Livins, P., Yacoby, Y., Rehr, J. J., Stern, E. A. Physical Review B, 1993. 47(21): p. 1426.Google Scholar