Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:58:58.136Z Has data issue: false hasContentIssue false

The Local Atomic Arrangement in Amorphous Sixc1−x:H By Electron Energy Loss Spectroscopy and Electron Diffraction

Published online by Cambridge University Press:  25 February 2011

J. Tafto
Affiliation:
Metallurgy and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11973
F. J. Kampas
Affiliation:
Metallurgy and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11973
Get access

Abstract

We have used electron energy loss spectroscopy (EELS) and electron diffraction to study the local atomic arrangement in amorphous SixC1−x:H in the composition range 0.37 < × < 1. In the thin films, which were pre-pared by radio-frequency glow discharge from a mixture of methane and sil-ane, the π at the K-edge of C does not show up even for the highest C-content, i.e., Si0.37C0.63, consistent with fourfold coordinated C in the whole composition range studied. Also the electron diffraction results suggest a tetrahedral network. Models where the minority element is sur-rounded by four atoms of the majority element, fit the experimental data better than models based on a random distribution of Si and C on the tetra-hedral network.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Anderson, D. A. and Spear, W. E., Philos. Mag. 35, 1 (1977).Google Scholar
2. Wieder, H., Cardona, M., and Guarnieri, C. R., Phys. Status Solidi B 92, 99 (1979).Google Scholar
3. Katayama, Y., Usami, K., and Shimada, T., Philos. Mag. 43B, 283 (1981).Google Scholar
4. Tafto, J. and Kampas, F. J., Appl. Phys. Lett. 46, 949 (1985).Google Scholar
5. Shimada, T., Katayama, Y., and Komatsubara, K. F., J. Appl. Phys. 50, 5530 (1979).Google Scholar
6. Wesner, D., Krummacher, S., Carr, R., Sham, T. K., Strongin, M., Eberhardt, W., Weng, S. L., Williams, G., Howells, M., Kampas, F., Heald, S., and Smith, F. W., Phys. Rev. B 28, 2152 (1983).Google Scholar
7. Sabatini, R. L., Tafto, J., Kampas, F. f., and Rajeswaran, G., Proc. of the 42nd Annual Meeting of the Electron Microscopy Society of America, Bailey, G. W., Editor, p. 562, San Francisco Press, San Francisco, 1984.Google Scholar
8. Herman, F., Kortum, R. L., and Kuglin, C. D., Int. J. Quantum Chem. 1S, 533 (1967).Google Scholar
9. Joannopoulos, J. D., Phys. Rev. B 16, 2764 (1977).Google Scholar
10. Moss, S. C. and Graczyk, J. F., Phys. Rev. Lett. 23, 1167 (1969).Google Scholar
11. Shevschik, N. J. and Paul, W., J. Non-Cryst. Solids 13, 1 (1973/1974).Google Scholar
12. Etherington, G., Wright, A. C., Wenzel, J. T., Dore, J. C., Clarke, J. H., and Sinclair, R. N., J. Non-Cryst. Solids 48, 265 (1982).Google Scholar
13. Katayama, Y., Shimada, T., Uda, T., Kobayashi, K. L. I., Jiang, C., Daimon, H., and Murata, Y., J. Non-Cryst. Solids 59/60, 561 (1983).CrossRefGoogle Scholar
14. Morimoto, A., Kataoka, T., Kumeda, M., and Shimizu, T., Philos. Mag. 50B, 517 (1984).Google Scholar